
	

	

Project	3:	Reinforcement	Learning	
(All	parts	are	to	be	completed	as	a	team)	

Due	[1-1.5	weeks	after	release]	
	

0.	The	Story	So	Far…	
	
Congratulations!	You’ve	just	been	hired	at	a	robotics	start-up.	They	want	to	use	
reinforcement	learning	to	create	industrial	robots	that	adapt	their	behavior	based	
on	their	specific	work	conditions,	rather	than	coming	with	a	preset,	unchangeable	
control	policy.	Already	on	the	first	day,	they	need	your	expertise.	
	
The	engineering	team	was	applying	basic	RL	algorithms	to	a	simplified	version	of	
their	robot’s	problem,	which	is	shown	below	in	the	form	of	a	gridworld.	The	blue	
circle	is	the	robot,	which	can	move	in	any	of	the	four	cardinal	directions	(trying	to	
move	off	the	grid	causes	the	agent	to	stay	in	place).	The	double	squares	are	terminal	
states.	The	green	shows	two	sources	of	positive	reward.	Entering	the	terminal	state	
on	the	left	yields	1	reward.	The	one	on	the	right	yields	3	reward.	In	order	to	get	the	
bigger	reward,	the	robot	has	to	perform	a	delicate	maneuver	–	if	it	deviates	toward	
the	bottom	of	the	grid	(representing	an	area	outside	the	robot’s	workspace),	the	
episode	is	terminated	to	prevent	the	robot	from	damaging	anything	(or	itself!).	

	
The	engineers	tried	both	SARSA	and	Q-learning	with	α	=	0.1	and	γ	=	0.9.	The	results	
were	promising:	both	algorithms	eventually	learned	to	get	the	big	reward.	Then	
things	got	strange.	It	was	discovered	that	the	implementation	had	a	couple	of	bugs.	
First,	ε	was	always	set	to	0	(no	matter	what	value	the	user	actually	specified).	When	
they	fixed	this,	and	used	ε		=	0.1	as	intended,	SARSA	no	longer	learned	to	get	the	big	
reward.	Then	it	was	discovered	that	the	Q-values	were	all	initialized	to	3	instead	of	
0.	Woops!	The	problem	is	that	when	they	fixed	that	bug	too,	neither	algorithm	
learned	to	get	the	big	reward!	
	
While	most	folks	at	this	company	are	familiar	with	the	basics	of	RL,	they	don’t	have	
a	lot	of	experience	applying	the	algorithms.	That’s	why	they	hired	you!	Your	boss	
wants	a	report	on	what	is	going	on	(see	Parts	1	and	2).	
	
In	addition	to	help	with	this	mystery,	the	engineering	team	would	like	some	
guidance	about	how	to	choose	step	sizes	when	linear	value	function	approximation	
is	used	(see	Parts	3	and	4).		



	

	

1.	SARSA	and	Q-learning	(10	pts)	
	
First,	you’ll	need	to	reproduce	the	engineering	team’s	results.	In	rl.py	I	have	
provided	some	unfinished	classes	for	you	to	complete.	The	QTableLearner	is	the	
superclass,	representing	a	reinforcement	learning	agent	that	stores	its	Q-values	in	a	
lookup	table.	The	constructor	sets	up	the	table	(indexed	first	by	state,	then	by	
action)	and	also	stores	the	other	learning	parameters.	You	should	implement	the	
following	methods:	

• greedy(state)	–	Returns	a	greedy	action	for	the	given	state.	If	multiple	
actions	have	the	maximum	Q-value,	it	should	uniformly	randomly	return	one.	

• epsilonGreedy(state)	–	Returns	an	ε-greedy	action	for	the	given	state.	
With	probability	ε	it	should	choose	an	action	uniformly	randomly.	Otherwise,	
it	should	return	a	greedy	action.	

• terminalStep(curState, action reward)	–	Performs	the	last	
learning	update	of	an	episode.	Both	SARSA	and	Q-learning	do	the	same	
update	in	this	case	since	the	Q-value	of	the	next	state-action	pair	is	0.	This	
method	should	update	the	Q-value	for	curState	and	action	using	the	TD	
update	rule.	

	
Now,	in	both	SarsaLearner	and	QLearner,	implement	

• learningStep(curState, action, reward, nextState)	–	
Performs	a	learning	update	based	on	the	given	state	transition.	This	method	
should	return	the	next	action	the	agent	wants	to	take	(i.e.	the	action	to	take	in	
nextState).	The	two	algorithms	have	different	update	rules!	

	
You	can	test	out	your	algorithms	with	gridworld.py.	Use	the	-h	option	to	see	the	
various	options	available	to	you.	
	
It	takes	an	input	file	representing	a	grid	world:	grid.txt	contains	the	example	above.	
The	first	row	has	the	dimensions	of	the	grid.	In	the	grid	itself,	each	entry	has	three	
comma-separated	entries.	The	first	is	either	“.”	or	“#”,	indicating	whether	that	space	
is	a	wall	or	not.	The	second	is	the	reward	for	entering	that	square.	The	third	is	either	
“T”	or	“F”,	indicating	whether	that	square	is	terminal	or	not.	
	
It	also	takes	an	output	file,	in	which	it	will	write	results	from	the	learning	process.	In	
particular,	you	can	specify	the	number	of	trials	to	run	and	the	number	of	episodes	
per	trial.	The	output	file	will	contain	the	average	results	over	the	trials.	In	particular,	
the	columns	of	the	output	file	are:	

• Episode	number	
• Average	total	reward	
• Average	discounted	sum	of	rewards	
• Average	number	of	steps	in	the	episode	

In	each	trial,	after	training	for	the	specified	number	of	episodes,	the	program	will	
also	run	the	greedy	policy	(no	learning,	no	ε)	and	report	the	results	for	that	policy.	
	



	

	

You	can	set	parameters	of	the	algorithm	on	the	command	line	as	well.	For	instance,	
python3 gridworld.py -l sarsa -e 0 -i 3 
uses	SARSA	with	the	parameters	the	engineering	team	started	with	(ε	=	0,	Q-values	
initialized	at	3).		You	can	even	watch	the	agent	do	its	thing	and	visualize	the	Q-
function.	For	example,	using	the	option	-d 10	will	display	every	10th	episode.		
	
For	testing	purposes	I	have	also	included	sarsavq.txt,	as	seen	in	class.	You	could	
compare	SARSA	and	Q-learning	to	see	if	they	behave	as	expected.	You	should	also	
consider	printing	out	learning	updates	to	see	if	they	match	your	understanding	of	
the	update	rules.		
	
2.	Exploration	Report	(10	pts)	
	
Now	it’s	time	to	do	your	real	job	–	the	team	is	counting	on	you!	In	this	section	you	
should	produce	a	report	in	rl.pdf	that	will	answer	the	engineering	team’s	questions	
and	offer	some	recommendations.		

• Your	report	will	be	disseminated	to	the	engineering	team,	so	they	are	your	
main	audience.	After	reading	your	report	they	should	be	thoroughly	
convinced	by	your	explanation	of	the	phenomenon.		

• Another	part	of	your	audience	is	your	boss,	who	you	want	to	impress.	Make	
sure	your	report	is	polished	and	professional.		

• The	last	audience	you	should	consider	are	readers	in	the	future.	Maybe	a	new	
team-member	is	hired,	or	maybe	a	year	from	now	a	similar	question	comes	
up	and	the	team	wants	to	refer	back	to	this	issue.	What	you	are	writing	isn’t	
an	email,	meant	to	be	immediately	discarded.	This	report	should	be	self-
contained	enough	to	have	value	to	a	reader	who	is	not	fully	immersed	in	the	
current	problem.	Don’t	just	launch	into	it	–	set	the	stage!	

	
Explaining	the	Results	
Start	by	re-generating	the	engineering	team’s	results.	Run	SARSA	and	Q-learning	for	
30	trials	of	500	episodes	each	with	each	of	the	three	parameter	settings:	

• ε	=	0,	initial	Q	=	3	
• ε	=	0.1,	initial	Q	=	3	
• ε	=	0.1,	initial	Q	=	0	

Decide	what	of	the	output	you	want	to	present	and	produce	clear,	well-labeled	plots	
of	the	average	performance	while	learning.	The	plots	should	be	organized	to	
facilitate	comparison	of	the	two	algorithms	and	of	the	three	parameter	settings.	You	
should	also	report	the	average	performance	of	the	final	greedy	policies.	
	
In	your	report	present	your	results	and	thoroughly	explain	why	the	algorithms	
behave	this	way.	There	is	a	lot	to	unpack	here.	Make	sure	you	address	

• Why	Q	=	3	seems	to	yield	better	results	than	Q	=	0	
• Why	it	is	possible	to	set	ε	=	0	when	Q	is	initialized	to	3	and	still	learn	a	good	

policy	
• Why	setting	ε	=	0.1	hurts	SARSA’s	performance	more	than	Q-learning’s	



	

	

• Why	neither	algorithm	learns	to	get	the	big	reward	when	Q	is	initialized	to	0	
	
It	may	help	to	watch	the	agent	and	visualize	the	value	function	under	these	
conditions.	Also	consider	doing	a	few	steps	of	the	algorithms	by	hand	to	see	what	is	
going	on!	
	
As	you	are	writing	keep	the	following	in	mind:	

• You	may	assume	that	your	boss	and	the	engineers	are	familiar	with	the	
problem	and	the	basic	algorithms,	so	you	don’t	need	to	spend	a	lot	of	time	
describing	them	in	detail.	However,	remember	that	your	report	should	be	
self-contained	enough	to	still	be	useful	later	on	if	a	team-member	is	hired	or	
someone	wants	to	refer	back	to	the	issue.	Also,	you	may	want	to	refer	to	
aspects	of	the	problem	or	the	algorithms	in	order	to	explain	the	observations.	

• Make	sure	you	describe	both	how	you	generated	the	results	and	the	results	
themselves,	as	shown	in	your	graphs.	Explain	what	the	graphs	show	and	
point	out	the	key	features	to	pay	attention	to.	

• Your	boss	is	a	busy	lady!	Be	professional,	clear,	and	to	the	point.	Make	sure	
she	knows	early	on	where	you	are	going	with	this	and	why	it	matters	or	she	
might	just	stop	reading.	

• Remember,	you	are	writing	for	engineers	–	they	need	you	to	be	precise,	
thorough,	and	logical	to	trust	that	your	explanation	is	correct.	Vague	
language	or	murky	arguments	will	not	be	received	well.		

• Don’t	be	afraid	to	draw	diagrams	and	work	through	examples	if	it	helps	get	
your	point	across.	

	
Make	Recommendations	
	
The	exploration	strategy	the	engineers	stumbled	upon	of	setting	the	initial	Q-values	
to	a	high	number	has	a	name:	optimistic	initialization.	It	is	often	coupled	with	setting	
ε	=	0.	In	your	report	you	should	also	give	some	practical	guidance	based	on	your	
findings	regarding	this	strategy.	In	particular	you	should	produce	an	example	MDP	
that	demonstrates	that	optimistic	initialization	with	ε	=	0	is	not	always	better	than	
ε-greedy	exploration	with	pessimistic	initialization.	Design	an	MDP	in	which	
optimistic	initialization	with	ε	=	0	causes	the	agent	to	take	far	longer	to	learn	a	near-
optimal	policy	than	pessimistic	initialization	with	ε	>	0.		
	
Note:	the	goal	of	this	example	is	to	convince	the	engineers	that	optimistic	
initialization	is	not	always	a	good	idea.	For	instance,	it	won’t	help	that	goal	if	you	do	
something	absurd	that	no	one	would	ever	do,	like	set	the	initial	value	to	1,000,000	
times	the	true	largest	value.	To	that	end:	

• The	optimistic	value	must	be	attainable,	so	there	must	be	some	reachable	
state-action	pair	that	actually	has	the	initial	value.		

• Your	pessimistic	initialization	should	truly	be	no	greater	than	the	lowest	
possible	value	(otherwise	it’s	still	optimistic	initialization!).		



	

	

• Your	example	should	be	as	simple	as	possible	so	it	clearly	illustrates	the	
principle	and	doesn’t	leave	your	reader	scratching	their	head	about	a	lot	of	
unnecessary	details.		

	
You	should	describe	your	MDP	and	your	experimental	methodology	and	report	the	
results	that	illustrate	and	explain	the	difference	between	these	two	strategies	in	
your	environment.	Based	on	your	findings,	comment	on	when	optimistic	
initialization	is	likely	to	be	a	benefit	or	an	impediment.	
	
3.	Linear	Value	Function	Approximation	(5	pts)	
	
Of	course	robots	usually	have	to	deal	with	more	continuous	values	–	position,	
velocity,	angle,	torque,	that	kind	of	thing.	And	that	means	value	function	
approximation.	The	engineering	team	is	a	little	bit	intimidated	by	the	prospect,	so	
it’s	up	to	you	to	get	the	ball	rolling.	
	
In	rl.py,	complete	the	implementation	of	the	LinearSarsaLearner	class.	It	has	a	
similar	structure	to	SarsaLearner.	The	main	difference	is	that	it	should	use	linear	
value	function	approximation	with	binary	features.	Rather	than	a	state,	the	methods	
take	a	list	of	feature	indices,	indicating	which	binary	features	are	“on”	(have	a	value	
of	1).	They	use	these	indices	to	determine	which	weights	to	add	together.	
	
You	can	test	your	agent	in	mountaincar.py,	which	applies	SARSA	with	value	function	
approximation	to	the	Mountain	Car	problem,	described	in	Sutton	and	Barto	
(Chapter	8.4).	It	uses	a	tile	coding	as	described	by	Sutton	and	Barto,	implemented	in	
tilefeatures.py.	By	default	it	uses	5	9x9	tilings,	but	these	parameters	can	be	set	on	the	
command	line.		
	
4.	Step	Size	Report	(5	pts)	
	
One	thing	the	engineers	have	trouble	with	is	picking	α,	the	step	size.	They	feel	like	
they	don’t	know	where	to	begin.	In	fact,	it	is	pretty	common	practice	to	just	try	
several	different	values	for	α	and	see	which	one	works	best.	This	is	usually	called	a	
“parameter	sweep.”	You	should	do	this	in	Mountain	Car	with	the	default	tiling	and	ε		
=	0	to	find	a	good	value	of	α.	Some	notes:	

• Make	sure	to	run	multiple	trials	of	each	parameter	setting	to	reduce	noise.	
• I	recommend	starting	with	a	few	candidate	values	over	a	wide	range,	seeing	

what	happens,	and	then	narrowing	in	on	a	more	promising	region	(kind	of	a	
binary	search	strategy).	

• You	should	gather	results	with	enough	values	of	α	to	make	a	compelling	case	
for	the	value	you	ultimately	settle	on.	It	is	not	enough	to	just	say	“We	picked	
x,	and	it	seemed	to	work!”	

	
Now	what	happens	when	you	increase	the	number	of	tilings	to	10	(using	the	-n	10	
option)?	Similarly	find	a	good	setting	of	α	in	this	case.	



	

	

In	rl.pdf	write	a	brief	report	that	presents	your	results	(plots	or	tables	are	probably	
a	good	idea).	It	should	use	them	to	explain	to	the	confused	engineers	how	to	pick	a	
good	step	size.	It	should	use	the	Mountain	Car	example	to…	

• Recommend	and	illustrate	a	methodology	for	picking	a	good	step	size,	
making	sure	to	address	any	ambiguity	in	what	the	meaning	“good”	is,	

• Explain	and	illustrate	the	symptoms	of	having	a	step	size	that	is	too	big	or	too	
small	(so	the	engineers	can	notice	when	they	have	that	problem),		

• Explain	and	illustrate	how	the	number	of	active	features	per	step	relates	to	
the	best	step	size,	and	

• Actually	recommend	a	step	size	in	the	Mountain	Car	example	for	both	5	
tilings	and	10	tilings	using	these	principles.	
	

All	of	the	above	guidelines	apply:	make	sure	your	report	is	polished	and	
professional,	clear	and	to	the	point,	and	self-contained	enough	to	be	useful	later	on.	
	


