
Project	1:	Heuristic	Search	
	
Deadlines	

• Parts	1	and	3	(individual)	due	[one	week	after	release]	
• Parts	1-4	(team)	due	[two	weeks	after	release]	

	
0.	Fair	Warning	
	
In	this	project	you	will	apply	heuristic	search	to	a	genuinely	challenging	problem.	
Developing	a	good	heuristic	will	take	creativity,	experimentation,	and	careful	
analysis.	There	are	likely	to	be	times	when	you	are	unsure	of	how	to	proceed;	you	
need	to	leave	yourself	time	to	get	stuck	and	then	to	have	a	clever	idea.	Also,	this	
project	has	a	writing	component	and	the	quality	of	your	writing	will	be	a	significant	
factor	in	your	grade.	You	will	need	time	to	write,	revise,	and	edit.	
	
In	other	words	you	should	start	working	on	this	assignment	immediately.	
Waiting	until	the	last	minute	(or	even	the	last	day!)	is	not	going	to	work	out	well.	
	
1.	Sliding	Puzzle	Heuristics	(10	pts	total)	
(Individual	and	team	scores	will	be	averaged	to	find	your	final	score)	
	
We’ve	discussed	the	8-puzzle	in	class.	In	this	part	of	the	project	you	will	explore	
various	heuristics	for	the	8-puzzle	(and	sliding	puzzles	more	generally).	
	
If	you	run	
python3 slidingpuzzle.py 
an	8-puzzle	will	be	generated	and	solved	using	A*	search	using	several	different	
heuristics.	Well…actually	none	of	them	have	been	implemented	yet.	That’s	your	job!	
Right	now	they	are	all	equivalent	to	the	“null	heuristic”	that	always	returns	0.	Recall	
that	A*	using	the	null	heuristic	is	equivalent	to	uniform	cost	search	(UCS).	
Furthermore,	when	all	moves	have	the	same	cost,	UCS	is	equivalent	to	breadth-first	
search	(BFS).	So	what	you	see	right	now	is	the	result	of	applying	BFS	to	the	8-puzzle.	
	
There	are	lots	of	options	you	can	give	to	the	program.	Run	
python3 slidingpuzzle.py -h 
to	see	them	all.	You	can	give	an	image	file	to	display	the	puzzle	(e.g.	
images/octopus.gif),	change	the	dimensions	of	the	puzzle,	and	even	play	the	puzzle	
yourself.	Most	importantly	for	our	purposes,	you	can	use	–d	to	specify	how	deep	the	
solution	is	(how	many	steps	it	takes	to	solve	the	puzzle)	and	–t	to	randomly	
generate	multiple	puzzles	and	get	average	results	for	the	heuristics	you	will	
experiment	with.	
	
Your	job	is	to	implement	the	following	heuristics.	In	each	heuristic	class	you	will	
implement	the	eval	method,	which	takes	a	state	and	returns	the	heuristic	value	(a	



number	that	estimates	the	cost	to	get	from	this	state	to	a	goal	state).	The	first	thing	
the	eval	method	does	is	to	load	the	given	state	into	self.problem,	which	is	a	
SlidingPuzzle	object	(defined	in	slidingpuzzle.py).	You	can	then	use	
self.problem	to	examine	the	state.		
	
The	methods	of	SlidingPuzzle	you	may	find	useful	are:	

• getDim()	–	returns	the	number	of	rows	and	number	of	columns	
• isSolved()	–	returns	True	if	the	puzzle	is	solved	
• getTile(row, col)	–	returns	the	index	of	the	tile	at	the	given	position.	
• getPos()	–	returns	the	position	of	the	blank	tile	as	a	(row,	column)	tuple.	
• getBoard()	–	returns	copy	of	the	board	as	a	list	of	lists.	

	
You	may	assume	that	tile	0	is	the	blank	tile,	and	that	the	solution	configuration	(for	
the	8-puzzle)	looks	like	this:	
0 1 2 
3 4 5 
6 7 8 
	
#	Misplaced	(2	pts)	
	
The	“#	Misplaced”	heuristic	gives	the	number	of	(non-blank)	tiles	that	are	out	of	
place.	As	discussed	in	class,	this	heuristic	is	the	optimal	solution	to	a	relaxation	of	
the	sliding	puzzle	in	which	each	step	can	move	a	tile	to	any	location	on	the	board,	
regardless	of	whether	that	location	is	occupied.		
	
Since	any	tile	that	is	out	of	place	must	move	at	least	one	position,	the	‘#	Misplaced’	
heuristic	is	admissible.	We	can	also	show	that	it	is	consistent.	Let	s	be	a	state,	a	be	an	
action,	and	s’	be	the	state	reached	by	taking	action	a	in	state	s.	Let	h	be	the	heuristic	
function.	The	cost	of	the	move	is	always	1.	Note	that	only	one	tile	has	changed	
position	from	s	to	s’.	If	that	tile	was	in	place	and	moved	out	of	place	or	was	out	of	
place	and	remains	out	of	place,	ℎ(𝑠’) ≥ ℎ(𝑠)	so	certainly	ℎ(𝑠!) ≥ ℎ(𝑠) − 1.	If	that	tile	
was	out	of	place	in	s	and	moves	into	its	correct	position,	then	ℎ(𝑠′) 	= 	ℎ(𝑠)	– 	1.	
Thus,	ℎ(𝑠!) ≥ ℎ(𝑠) − 1.	Since	the	cost	of	every	move	is	1,	we	see	that	𝑐(𝑠, 𝑎, 𝑠!) +
ℎ(𝑠!) = 1 + ℎ(𝑠!) ≥ ℎ(𝑠).	Therefore	this	heuristic	is	consistent.	
	
You	should	implement	this	heuristic	in	the	NumMisplacedHeuristic	class	in	
heuristics.py.		
	
Manhattan	(3	pts)	
	
The	Manhattan	distance	between	two	positions	(a,	b)	and	(c,	d)	is	|a	–	c|	+	|b	–	d|.	It	
gets	its	name	from	the	fact	that	Manhattan	is	laid	out	in	a	grid,	so	to	get	anywhere	
you	can’t	travel	in	a	straight	line;	you	must	travel	a	certain	number	of	blocks	across	
town	and	then	a	certain	number	of	blocks	up-	or	down-town.	The	“Manhattan”	
heuristic	gives	the	sum	of	the	Manhattan	distances	between	each	(non-blank)	tile’s	



position	and	its	position	in	the	goal	state.	As	discussed	in	class,	this	heuristic	is	the	
optimal	solution	to	a	relaxation	of	the	sliding	puzzle	in	which	each	step	moves	a	tile	
one	square,	regardless	of	whether	that	square	is	already	occupied.	
	
Note	that	in	the	real	solution,	we	must	at	the	very	least	move	each	tile	into	its	
correct	position,	and	can	only	do	so	one	square	at	a	time.	The	Manhattan	distance	is	
the	minimum	possible	number	of	steps	it	takes	to	move	a	tile	into	position,	one	
square	at	a	time.	So	this	heuristic	is	admissible.	We	can	also	show	that	it	is	
consistent	using	a	similar	argument	to	the	one	we	used	above.	Let	s	be	a	state,	a	be	
an	action,	and	s’	be	the	state	reached	by	taking	action	a	in	state	s.	Let	h	be	the	
heuristic	function.	Note	that	only	one	tile	has	changed	position	by	one	square	from	s	
to	s’.	The	only	way	h(s’)	can	be	less	than	h(s)	is	if	that	tile	moved	closer	to	its	
intended	position.	In	that	case	ℎ(𝑠′) 	= 	ℎ(𝑠)	– 	1.	Thus,	ℎ(𝑠!) ≥ ℎ(𝑠) − 1.	In	every	
other	case,	ℎ(𝑠!) ≥ ℎ(𝑠).	Since	the	cost	of	every	move	is	1,	we	see	that	𝑐(𝑠, 𝑎, 𝑠!) +
ℎ(𝑠!) = 1 + ℎ(𝑠!) ≥ ℎ(𝑠).	Therefore	this	heuristic	is	consistent.	
	
You	should	implement	this	heuristic	in	the	ManhattanHeuristic	class.	
	
Gaschnig’s	Heuristic	(4	pts)	
	
Gaschnig’s	Heuristic	(Gaschnig,	1979)	is	the	optimal	solution	to	a	relaxation	of	the	
sliding	puzzle	in	which	at	each	step	any	tile	may	be	moved	into	the	blank	space	
(leaving	a	blank	behind	it),	not	just	adjacent	tiles.	The	solution	to	this	relaxed	
problem	can	be	computed	via	a	greedy	algorithm:	

1. n	=	0	
2. while	not	in	goal	state	
3. if	blank	is	out	of	place	
4. move	correct	tile	to	the	blank	position	
5. else	the	blank	is	in	the	correct	place	
6. move	an	arbitrary	misplaced	tile	to	the	blank	position	
7. n	=	n	+	1	
8. return	n	

	
Note	that	in	every	step	of	the	real	solution,	a	tile	is	moved	into	the	blank	space.	This	
heuristic	gives	the	minimum	number	of	steps	required	if	in	every	step	a	tile	is	
moved	into	a	blank	space	(with	no	constraints	on	which	tile	that	is).	Thus,	the	
optimal	solution	to	the	full	problem	must	take	at	least	this	many	steps	to	reach	the	
goal.	Thus	this	heuristic	is	admissible.	We	can	also	show	that	it	is	consistent.	Let	s	be	
a	state,	a	be	an	action,	and	s’	be	the	state	reached	by	taking	action	a	in	state	s.	Let	h	
be	the	heuristic	function.	Note	that	only	one	tile	has	changed	position	from	s	to	s’.	
There	are	two	ways	that	h(s’)	can	be	less	than	h(s).	If	that	tile	was	out	of	place	in	s	
and	moves	into	its	correct	position,	then	note	that	the	greedy	algorithm	in	s	would	
have	begun	by	performing	this	exact	move	(moving	the	correct	misplaced	tile	into	
the	blank	space).	After	that	one	step,	the	greedy	algorithm	is	processing	state	s’,	so	
the	algorithm	performs	the	same	steps	in	both	states.	Therefore,	the	algorithm	takes	
one	more	step	in	s	than	in	s’,	so	ℎ(𝑠′) 	= 	ℎ(𝑠)	– 	1.	Similarly,	if	the	tile	was	out	of	



place	in	s	and	moves	to	the	position	where	the	blank	should	be,	then	that	implies	
that	the	blank	was	correctly	placed	in	s.	As	such,	once	again,	this	is	the	first	step	the	
algorithm	would	have	taken	and	it	will	otherwise	proceed	with	the	same	steps	in	
both	states.	So	ℎ(𝑠′) 	= 	ℎ(𝑠)	– 	1.	Thus,	ℎ(𝑠!) ≥ ℎ(𝑠) − 1.	In	every	other	case	ℎ(𝑠!) ≥
ℎ(𝑠).	Since	the	cost	of	every	move	is	1,	we	see	that	𝑐(𝑠, 𝑎, 𝑠!) + ℎ(𝑠!) = 1 + ℎ(𝑠!) ≥
ℎ(𝑠).	Therefore	this	heuristic	is	consistent.	
	
You	should	implement	this	heuristic	in	the	GaschnigsHeuristic	class.	You	will	
probably	want	to	make	use	of	getBoard	so	you	can	do	your	own	swaps!	
	
	
Combo	(1	pt)	
	
Recall	from	class	that	a	sound	way	to	combine	two	heuristics	is	to	return	the	
maximum	of	the	two.	In	ComboHeuristic	you	should	implement	the	heuristic	
that	returns	the	maximum	of	the	“Manhattan”	heuristic	and	Gaschnig’s	heuristic.	
Please	do	not	re-implement	the	heuristic	functions!	In	the	constructor	you	can	
create	instance	variables	for	the	two	heuristics,	and	then	use	them	in	eval.	
	
Since	this	heuristic	is	the	max	of	two	consistent	heuristics,	it	is	also	consistent.	
	
2.	Sokoban	
	
Sokoban	is	a	puzzle	created	by	Hiroyuki	Imabayashi	in	1981.	The	name	is	Japanese	
and	translates	to	“warehouse	keeper”	in	English.	A	Sokoban	puzzle	is	pictured	
below.	In	the	game,	there	are	boxes	(yellow	squares),	storage	locations	(red	
squares),	and	a	robot	(blue	circle).	The	rules	are	quite	simple	–	the	robot	can	move	
in	any	of	the	four	cardinal	directions	(north,	south,	east,	west).	The	dark	squares	are	
impassable	walls.	When	the	robot	moves,	it	can	push	a	single	box,	unless	there	is	
something	in	the	way	(a	wall	or	another	box).	Boxes	cannot	be	pulled.	The	goal	is	to	
get	all	the	boxes	onto	storage	locations.	

	



Despite	its	seeming	simplicity,	Sokoban	can	be	very	difficult	to	solve.	Most	Sokoban	
puzzles	still	remain	out	of	reach	for	state	of	the	art	AI	methods.	In	this	project	we’ll	
focus	on	very	simple	examples	so	you	should	be	able	to	make	progress.	
	
We	can	formulate	Sokoban	as	a	search	problem.	The	state	consists	of	the	positions	
of	the	robot	and	the	boxes.	The	goal	state	is	the	one	where	all	the	boxes	are	stored.	
There	are	four	actions,	one	for	each	direction.	There	are	many	ways	to	measure	the	
quality	of	a	solution.	For	our	purposes,	the	cost	of	a	non-pushing	move	is	1,	the	cost	
of	pushing	a	box	is	2,	and	the	cost	of	a	failed	move	(e.g.	moving	into	a	wall)	is	3.	
	
You	can	get	a	feel	for	the	puzzle	by	running	
$ python3 sokoban.py –p examples/tricky.txt 
The	–p	option	makes	the	puzzle	playable	with	the	arrow	keys.	The	file	tricky.txt	
specifies	the	pictured	Sokoban	puzzle.	Other	simple	puzzles	are	included	as	well.		
	
3.	Sokoban	Heuristic	(10	pts)	
(Individual	and	team	scores	will	be	averaged	to	find	your	final	score)	
	
If	you	run	the	program	without	the	–p	option,	it	will	use	A*	graph	search	to	find	an	
optimal	solution	to	the	given	puzzle.	When	it	is	done,	it	will	animate	the	solution	and	
also	print	out	some	useful	statistics:	the	number	of	seconds	the	search	process	took,	
the	number	of	nodes	it	expanded	in	the	tree,	and	the	total	cost	of	the	solution.	
	
Right	now	the	program	is	using	the	null	heuristic	(the	heuristic	that	always	returns	
0),	so	it	is	effectively	performing	uniform	cost	search.	Your	job	is	to	improve	
performance	by	developing	a	better,	consistent	heuristic.		
	
In	heuristics.py	you	will	find	a	class	called	SokobanHeuristic,	structured	just	like	
the	sliding	puzzle	heuristics.	You	should	implement	your	heuristic	in	this	class.	The	
most	important	function	is	eval,	which	takes	a	state	and	gives	its	heuristic	value.	
Note	that	the	first	thing	the	function	does	is	load	the	state	into	self.problem	(a	
SokobanPuzzle	object,	see	sokoban.py).	That	allows	you	to	use	problem	to	
examine	many	aspects	of	the	state.	The	relevant	methods	of	SokobanPuzzle	are:	

• getDim()	–	returns	the	number	of	rows	and	number	of	columns	
• isSolved()	–	returns	True	if	the	puzzle	is	solved	
• getItem(row, column)	–	returns	a	character	at	the	given	position	

representing	the	contents	of	the	square.	The	characters	are:	
o Blank	space:	‘.’	
o Wall:	‘#’	
o Empty	goal:	‘*’	
o Player	on	blank:	‘+’	
o Player	on	goal:	‘=’	
o Box	on	blank:	‘O’	
o Box	on	goal:	‘o’	



• getGoals()	–	returns	a	sorted	list	of	the	positions	of	the	goals,	
represented	as	(row,	column)	tuples.	

• getBoxes()	–	returns	a	sorted	list	of	the	boxes,	represented	as	(row,	
column,	isOnGoal)	tuples	(the	third	item	is	True	if	the	box	is	on	a	goal).	

• getPos()	–	returns	the	player	position	as	a	(row,	column)	tuple.	
	
Notice	also	that	the	heuristic	is	a	class,	not	just	a	function.	This	means	that,	if	you	
find	it	helpful,	you	may	pre-compute	some	quantities	in	the	constructor	and	store	
them	as	instance	variables	for	use	in	the	eval	function.	This	might	speed	up	your	
search	if	you	find	yourself	calculating	the	same	quantities	over	and	over	again.	Any	
pre-processing	you	do	must	have	polynomial	worst-case	complexity	in	terms	of	the	
number	of	boxes.	In	particular	note	that	solving	the	problem	has	exponential	worst-
case	complexity,	so	you	can’t	just	solve	the	problem	in	the	constructor!	
	
You	may	find	the	provided	puzzles	helpful	to	evaluate	your	heuristic	and	generate	
ideas	for	how	you	might	improve	it.	You	can	also	make	your	own	examples.	
Ultimately	the	performance	of	your	heuristic	will	be	measured	on	the	hardest	
provided	puzzle,	benchmark.txt.	The	number	of	nodes	A*	expands	using	your	
heuristic	determines	your	maximum	score:	
	

Nodes	expanded:	 Max	points:	
100,001	–	193,390	 2	
60,001	–	100,00	 4	
50,001	–	60,000	 6	
30,001	–	50,000	 8	
20,001	–	30,000	(hard)	 10	
8,001	–	20,000	(very	hard)	 10+1	bonus	
£	8,000	(very	very	hard)	 10+2	bonus	

	
You	will	receive	fewer	than	the	maximum	number	of	points	if:	

• your	heuristic	is	not	consistent,	or	not	admissible,	
• your	heuristic	is	specific	to	benchmark.txt	(it	should	work	in	other	examples),	
• you	do	too	much	pre-processing	(must	be	polynomial	time!),	
• your	heuristic	algorithm/implementation	is	notably	inefficient,	or	
• your	code	is	notably	buggy	or	poorly	written.	

	
Notes	and	hints:	

• Many	people	have	worked	on	the	Sokoban	problem.	If	you	take	inspiration	
from	existing	literature	on	the	subject,	make	sure	you	cite	your	sources!	

• If	you	want	to	use	a	well-known	algorithm	and	you	find	a	Python	module	that	
can	do	it,	you	may	use	it.	However,	any	non-standard	module	you	import	
must	be	included	with	your	submission	(do	not	make	me	install	new	
packages!).	Also	make	sure	you	cite	your	sources.	



• If	you	get	a	solution	with	different	total	cost	with	your	heuristic	than	the	null	
heuristic,	then	your	heuristic	is	not	consistent,	maybe	not	even	admissible.	
Run	the	program	with	the	–n	option	to	use	the	null	heuristic	instead	of	yours.	

• That	said,	sometimes	inadmissible	heuristics	yield	optimal	solutions.	You	
have	to	analyze	your	heuristic	yourself	to	be	sure!	

• Remember	that	a	good	way	to	get	an	admissible	heuristic	is	to	find	the	
optimal	solution	to	a	relaxed	problem.	Consider	how	you	can	relax	Sokoban	
to	create	a	problem	with	a	lower	cost	and	easier-to-compute	solution.	

• Admissible	heuristics	are	often	also	consistent,	especially	when	derived	from	
a	problem	relaxation.	Start	by	focusing	on	admissibility.	Once	you	have	one	
you	like,	check	whether	it	is	consistent	and	tweak	it	if	necessary.	

• Sometimes	you	can	detect	that	a	heuristic	is	inconsistent	by	looking	at	the	
quantity	total_cost+heuristic	for	the	states	along	the	solution	path.	If	that	ever	
decreases	from	one	state	to	the	next,	your	heuristic	is	not	consistent.	

• If	you	have	an	admissible	heuristic	and	want	to	find	a	better	one,	you	need	to	
increase	the	heuristic	values	(i.e.	make	them	more	accurate),	at	least	in	some	
states.	Think	about	aspects	of	the	problem	you	ignored/relaxed	away,	and	
try	to	at	least	partially	take	them	into	account	in	your	heuristic.	

• One	of	the	challenging	aspects	of	Sokoban	is	that	there	are	many	states	from	
which	no	solution	can	be	reached.	Can	your	heuristic	take	this	into	account?	
	

4.	Report	(20	pts)	
(To	be	completed	as	a	team	only)	
	
In	search.pdf	include	the	following:	
	
Sliding	Puzzle	Heuristic	Analysis	(10	pts)	
	
Evaluate	the	slide	puzzle	heuristics	by	running	solveslidingpuzzle.py	on	the	8-puzzle	
with	10	independent	trials	(–t	10)	and	with	solution	depths	at	5,	10,	15,	and	20	(–d	
5,	–d	10,		–d	15,	and	–d	20,	respectively).	Report	the	average	results	in	two	clearly	
formatted	and	labeled	tables:	one	for	time	and	one	for	number	of	nodes	expanded.	
Then	write	an	email	to	respond	to	the	following,	referring	to	your	result	tables:		
	
To: you@acollege.edu 
From: astudent@acollege.edu 
Subject: Sliding puzzle heuristics 
 
Hey, 
I’ve been working on a sliding puzzle solver but I don’t know which heuristic to use. # 
Misplaced is performing way worse than Manhattan or Gaschnig’s. I’m worried I might 
have implemented it wrong. Is it supposed to be this bad? Why is it so much worse? 
Also, even though Gaschnig’s is definitely worse than Manhattan, Combo is *better* 
than Manhattan. How can combining a good heuristic with a bad heuristic make a better 



heuristic?? I need to pick the heuristic that will solve puzzles the fastest. Which one 
should I use??? HALP! 
-A 
	
Sokoban	Heuristic	Description/Analysis	(10	pts)	
	
Write	a	brief	description	of	your	heuristic	and	a	clear,	convincing,	and	precise	
argument	that	it	is	consistent.	Imagine	that	your	reader	is	a	fellow	classmate	who	
has	been	working	on	the	same	problem.	Perhaps	your	heuristic	turned	out	to	work	
better	than	theirs,	and	they	would	like	to	compare	against	it	in	their	final	project.	
After	reading	your	description,	your	classmate	should	know	enough	to	re-
implement	your	heuristic,	and	be	thoroughly	convinced	that	it	is	consistent.	
Consider	the	descriptions	of	the	sliding	puzzle	heuristics	as	examples.	
	
If	you	know	that	your	heuristic	is	not	consistent,	explain	why	not	and	argue	that	it	is	
admissible.	If	you	know	that	it	is	not	admissible,	explain	why	not.	


