
Text Denoising Autoencoder for News Headlines

In this assignment, we’ll explore a more advanced use of deep learning on a natural language process (NLP) task
involving news headlines. In particular, we’ll be working with a dataset of Reuters news headlines collected over a
span of 15 months, covering some of 2018, 2019, and early 2020. This assignment will combine several of the concepts
that we discussed in class, including autoencoders, recurrent neural networks, data augmentation, and working with
embeddings.

To be more specific, we’ll be building an autoencoder of news headlines. This idea is similar the kind of image
autoencoder we saw/built in lecture: we will build an encoder model that maps a news headline to a vector
embedding, and a decoder that reconstructs the news headline. Both our encoder and decoder networks will be
Recurrent Neural Networks. You’ll have a chance build networks that takes a sequence as an input, and a network
that generates a sequence as an output.

This project is organized as follows:

• Question 1. Data exploration
• Question 2. Building the autoencoder
• Question 3. Training the autoencoder using data augmentation
• Question 4. Analyzing the embeddings (interpolating between headlines)

Much of the idea behind this assignment is movtivated by Shen et al [1]. We’ll use the data augmentation rules
proposed in that work to improve the robustness of the autoencoder.

[1] Shen et al (2019) “Educating Text Autoencoders: Latent Representation Guidance via Denoising”
https://arxiv.org/pdf/1905.12777.pdf

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

import matplotlib.pyplot as plt
import numpy as np
import random

%matplotlib inline

Question 1

Download the files reuters_train.txt and reuters_valid.txt, and upload them to Google Drive.

Then, mount Google Drive from your Google Colab notebook:

from google.colab import drive
drive.mount('/content/gdrive')

train_path = '/content/gdrive/My Drive/CSC321/reuters_train.txt' # Update me
valid_path = '/content/gdrive/My Drive/CSC321/reuters_valid.txt' # Update me

We will be using PyTorch’s torchtext utilities to help us load, process, and batch the data. This package is useful,
but takes a bit of time to get used to.

We’ll be using a TabularDataset to load our data, which works well on structured CSV data with fixed columns
(e.g. a column for the sequence, a column for the label). Our tabular dataset is even simpler: we have no labels, just
some text. So, we are treating our data as a table with one field representing our sequence.

import torchtext

# Tokenization function to separate a headline into words
def tokenize_headline(headline):
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"""Returns the sequence of words in the string headline. We also
prepend the "<bos>" or beginning-of-string token, and append the
"<eos>" or end-of-string token to the headline.
"""
return ("<bos> " + headline + " <eos>").split()

# Data field (column) representing our *text*.
text_field = torchtext.data.Field(

sequential=True, # this field consists of a sequence
tokenize=tokenize_headline, # how to split sequences into words
include_lengths=True, # to track the length of sequences, for batching
batch_first=True, # similar to batch_first=True in nn.RNN demonstrated in lecture
use_vocab=True) # to turn each character into an integer index

train_data = torchtext.data.TabularDataset(
path=train_path, # data file path
format="tsv", # fields are separated by a tab
fields=[('title', text_field)]) # list of fields (we have only one)

Part (a) – 2 points

Draw histograms of the number of words per headline in our training set. Excluding the <bos> and <eos> tags in
your computation. Explain why we would be interested in such histograms.

# Include your histogram and your written explanations

# Here is an example of how to plot a histogram in matplotlib:
# plt.hist(np.random.normal(0, 1, 40), bins=20)

# Here are some sample code that uses the train_data object:
print(train_data[5].title)
for example in train_data:

print(example.title)
break

Part (b) – 2 points

How many distinct words appear in the training data? Exclude the <bos> and <eos> tags in your computation.

# Report your values here. Make sure that you report the actual values,
# and not just the code used to get those values

# You might find the python class Counter from the collections package useful
from collections import Counter

Part (c) – 2 points

The distribution of words will have a long tail, meaning that there are some words that will appear very often, and
many words that will appear infrequently. How many words appear exactly once in the training set? Exactly twice?

# Report your values here. Make sure that you report the actual values,
# and not just the code used to get those values

Part (d) – 2 points

Explain why we may wish to replace these infrequent words with an <unk> tag, instead of learning embeddings for
these rare words. (Hint: Consider words in the validation set that might not appear in training)
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# Include your explanation here

Part (e) – 2 points

We will only model the top 9995 words in the training set, excluding the tags <bos>, <eos>, and other possible tags
we haven’t mentioned yet (including those, we will have a vocabulary size of exactly 10000 tokens).

What percentage of word occurrences will be supported? Alternatively, what percentage of word occurrences in the
training set will be set to the <unk> tag?

# Report your values here. Make sure that you report the actual values,
# and not just the code used to get those values

Our torchtext package will help us keep track of our list of unique words, known as a vocabulary. A vocabulary
also assigns a unique integer index to each word. You can interpret these indices as sparse representations of one-hot
vectors.

# Build the vocabulary based on the training data. The vocabulary
# can have at most 9997 words (9995 words + the <bos> and <eos> token)
text_field.build_vocab(train_data, max_size=9997)

# This vocabulary object will be helpful for us
vocab = text_field.vocab
print(vocab.stoi["hello"]) # for instances, we can convert from string to (unique) index
print(vocab.itos[10]) # ... and from word index to string

# The size of our vocabulary is actually 10000
vocab_size = len(text_field.vocab.stoi)
print(vocab_size) # should be 10000

# The reason is that torchtext adds two more tokens for us:
print(vocab.itos[0]) # <unk> represents an unknown word not in our vocabulary
print(vocab.itos[1]) # <pad> will be used to pad short sequences for batching

Question 2

Building a text autoencoder is a little more complicated than an image autoencoder, so we’ll need to thoroughly
understand the model that we want to build before actually building our model. Note that the best and fastest way to
complete this assignment is to spend a lot of time upfront understanding the architecture. The explanations are quite
dense, and you might need to stop every sentence or two to understand what’s going on. You won’t feel productive
for a while since you won’t be writing code, but this initial investment will help you become more productive later on.
Understanding this architecture will also help you understand other machine learning papers you might come across.
So, take a deep breath, and let’s do this!

Here is a diagram showing our desired architecture:
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There are two main components to the model: the encoder and the decoder. As always with neural networks, we’ll
first describe how to make predictions with of these components. Let’s get started:

The encoder will take a sequence of words (a headline) as input, and produce an embedding (a vector) that represents
the entire headline. In the diagram above, the vector h(7) is the vector embedding containing information about the
entire headline. This portion is very similar to the sentiment analysis RNN that we discussed in lecture (but without
the fully-connected layer that makes a prediction).

The decoder will take an embedding (in the diagram, the vector h(7)) as input, and uses a separate RNN to generate
a sequence of words. To generate a sequence of words, the decoder needs to do the following:

1) Determine the previous word that was generated. This previous word will act as x(t) to our RNN, and will be
used to update the hidden state m(t). Since each of our sequences begin with the <bos> token, we’ll set x(1) to
be the <bos> token.

2) Compute the updates to the hidden state m(t) based on the previous hidden state m(t−1) and x(t). Intuitively,
this hidden state vector m(t) is a representation of all the words we still need to generate.

3) We’ll use a fully-connected layer to take a hidden state m(t), and determine what the next word should be. This
fully-connected layer solves a classification problem, since we are trying to choose a word out of K = 10000
distinct words. As in a classification problem, the fully-connected neural network will compute a probability
distribution over these 10,000 words. In the diagram, we are using z(t) to represent the logits, or the pre-softmax
activation values representing the probability distribution.

4) We will need to sample an actual word from this probability distribution z(t). We can do this in a number of
ways, which we’ll discuss in question 3. For now, you can imagine your favourite way of picking a word given a
distribution over words.

5) This word we choose will become the next input x(t+1) to our RNN, which is used to update our hidden state
m(t+1)—i.e. to determine what are the remaining words to be generated.

We can repeat this process until we see an <eos> token generated, or until the generated sequence becomes too long.

Unfortunately, we can’t train this autoencoder in the way we just described. That is, we can’t just compare our
generated sequence with our ground-truth sequence, and get gradients. Both sequences are discrete entities, so we
won’t be able to compute gradients at all! In particular, sampling is a discrete process, and so we won’t be able
to back-propagate through any kind of sampling that we do.

You might wonder whether we can get away with computing gradients by comparing the distributions z(t) with the
ground truth words at each time step. Like any multi-class classification problem, we can represent the ground-truth
words as a one-hot vector, and use the cross-entropy loss.

In theory, we can do this. In practice, there are a few issues. One is that the generated sequence might be longer or
shorter than the actual sequence, meaning that there may be more/fewer z(t)s than ground-truth words. Another more
insidious issue is that the gradients will become very high-variance and unstable, because early mistakes
will easily throw the model off-track. Early in training, our model is unlikely to produce the right answer in
step t = 1, so the gradients we obtain based on the other time steps will not be very useful.

At this point, you might have some ideas about “hacks” we can use to make training work. Fortunately, there is one
very well-established solution called teacher forcing which we can use for training: instead of sampling the next
word based on z(t), we will forgo sampling, and use the ground truth x(t) in the next step.

Here is a diagram showing how we can use teacher forcing to train our model:
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We will use the RNN generator to compute the logits z(1), z(2), · · · z(T ). These distributions can be compared to the
ground-truth words using the cross-entropy loss. The loss function for this model will be the sum of the losses across
each t. (This is similar to what we did in a pixel-wise prediction problem.)

We’ll train the encoder and decoder model simultaneously. There are several components to our model that contain
tunable weights:

• The word embedding that maps a word to a vector representation. In theory, we could use GloVe embeddings,
or initialize our parameters to GloVe embeddings. To prevent students who don’t have Colab access from having
to download a 1GB file, we won’t do that. The word embedding component is represented with blue arrows in
the diagram.

• The encoder RNN (which will use Gated Recurrent Units) that computes the embedding over the entire headline.
The encoder RNN is represented with black arrows in the diagram.

• The decoder RNN (which will also use Gated Recurrent Units) that computes hidden states, which are vectors
representing what words are to be generated. The decoder RNN is represented with gray arrows in the diagram.

• The projection MLP (one fully-connected layer) that computes a distribution over the next word to generate,
given a decoder RNN hidden state.

Part (a) – 10 pts

Complete the code for the AutoEncoder class below by:

1. Filling in the missing numbers in the __init__ method using the parameters vocab_size, emb_size, and
hidden_size. (4 points)

2. Complete the forward method, which uses teacher forcing and computes the logits z(t) of the reconstruction of
the sequence. (4 points)

You should first try to understand the encode and decode methods, which are written for you. The encode method
mimics a discriminative RNN (see the sentiment analysis notebook). The decode method is a generative RNN and is a
bit more complex (see the text generation tutorial notebook). You might want to scroll down to the sample_sequence
function to see how this function will be called.

You can (but don’t have to) use the encode and decode method in your forward method. In either case, be very
careful of the input that you feed into ether decode or to self.decoder_rnn. Refer to the teacher-forcing diagram.

class AutoEncoder(nn.Module):
def __init__(self, vocab_size, emb_size, hidden_size):

"""
A text autoencoder. The parameters

- vocab_size: number of unique words/tokens in the vocabulary
- emb_size: size of the word embeddings $xˆ{(t)}$
- hidden_size: size of the hidden states in both the

encoder RNN ($hˆ{(t)}$) and the
decoder RNN ($mˆ{(t)}$)

"""
super().__init__()
self.embed = nn.Embedding(num_embeddings=None, # TODO

embedding_dim=None) # TODO
self.encoder_rnn = nn.GRU(input_size=None, #TODO

hidden_size=None, #TODO
batch_first=True)

self.decoder_rnn = nn.GRU(input_size=None, #TODO
hidden_size=None, #TODO
batch_first=True)

self.proj = nn.Linear(in_features=None, # TODO
out_features=None) # TODO

def encode(self, inp):
"""
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Computes the encoder output given a sequence of words.
"""
emb = self.embed(inp)
out, last_hidden = self.encoder_rnn(emb)
return last_hidden

def decode(self, inp, hidden=None):
"""
Computes the decoder output given a sequence of words, and
(optionally) an initial hidden state.
"""
emb = self.embed(inp)
out, last_hidden = self.decoder_rnn(emb, hidden)
out_seq = self.proj(out)
return out_seq, last_hidden

def forward(self, inp):
"""
Compute both the encoder and decoder forward pass
given an integer input sequence inp with shape [batch_size, seq_length],
with inp[a,b] representing the (index in our vocabulary of) the b-th word
of the a-th training example.

This function should return the logits $zˆ{(t)}$ in a tensor of shape
[batch_size, seq_length - 1, vocab_size], computed using *teaching forcing*.

The (seq_length - 1) part is not a typo. If you don't understand why
we need to subtract 1, refer to the teacher-forcing diagram above.
"""

# TODO

Part (b) – 5 pts

To check that your model is set up correctly, we’ll train our AutoEncoder neural network for at least 300 iterations to
memorize this sequence:

headline = train_data[42].title
input_seq = torch.Tensor([vocab.stoi[w] for w in headline]).long().unsqueeze(0)

We are looking for the way that you set up your loss function corresponding to the figure above. Be very careful of
off-by-ones.

Note that the Cross Entropy Loss expects a rank-2 tensor as its first argument, and a rank-1 tensor as its second
argument. You will need to properly reshape your data to be able to compute the loss.

model = AutoEncoder(vocab_size, 128, 128)
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()

for it in range(300):

# TODO

if (it+1) % 50 == 0:
print("[Iter %d] Loss %f" % (it+1, float(loss)))
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Part (c) – 2 pt

Once you are satisfied with your model, encode your input using the RNN encoder, and sample some sequences from
the decoder. The sampling code is provided to you, and performs the computation from the first diagram (without
teacher forcing).

Note that we are sampling from a multi-nomial distribution described by the logits z(t). For example, if our distribution
is [80%, 20%] over a vocabulary of two words, then we will choose the first word with 80% probability and the second
word with 20% probability.

Call sample_sequence at least 5 times, with the default temperature value. Make sure to include the generated
sequences in your PDF report.

def sample_sequence(model, hidden, max_len=20, temperature=1):
"""
Return a sequence generated from the model's decoder

- model: an instance of the AutoEncoder model
- hidden: a hidden state (e.g. computed by the encoder)
- max_len: the maximum length of the generated sequence
- temperature: described in Part (d)

"""
# We'll store our generated sequence here
generated_sequence = []
# Set input to the <BOS> token
inp = torch.Tensor([text_field.vocab.stoi["<bos>"]]).long()
for p in range(max_len):

# compute the output and next hidden unit
output, hidden = model.decode(inp.unsqueeze(0), hidden)
# Sample from the network as a multinomial distribution
output_dist = output.data.view(-1).div(temperature).exp()
top_i = int(torch.multinomial(output_dist, 1)[0])
# Add predicted word to string and use as next input
word = text_field.vocab.itos[top_i]
# Break early if we reach <eos>
if word == "<eos>":

break
generated_sequence.append(word)
inp = torch.Tensor([top_i]).long()

return generated_sequence

# Your solutions go here

Part (d) – 3 pt

The multi-nomial distribution can be manipulated using the temperature setting. This setting can be used to make
the distribution “flatter” (e.g. more likely to generate different words) or “peakier” (e.g. less likely to generate different
words).

Call sample_sequence at least 5 times each for at least 3 different temperature settings (e.g. 1.5, 2, and 5). Explain
why we generally don’t want the temperature setting to be too large.

# Include the generated sequences and explanation in your PDF report.

Question 3

It turns out that getting good results from a text auto-encoder is very difficult, and that it is very easy for our model
to overfit. We have discussed several methods that we can use to prevent overfitting, and we’ll introduce one more
today: data augmentation.
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The idea behind data augmentation is to artificially increase the number of training examples by “adding noise” to the
image. For example, during AlexNet training, the authors randomly cropped 224 × 224 regions of a 256 × 256 pixel
image to increase the amount of training data. The authors also flipped the image left/right (but not up/down—why?).
Machine learning practitioners can also add Gaussian noise to the image.

When we use data augmentation to train an autoencoder, we typically to only add the noise to the input, and expect
the reconstruction to be noise free. This makes the task of the autoencoder even more difficult. An autoencoder trained
with noisy inputs is called a denoising auto-encoder. For simplicity, we will not build a denoising autoencoder
today.

Part (a) – 3pt

Give three more examples of data augmentation techniques that we could use if we were training an image autoencoder.
What are different ways that we can change our input?

# Include your three answers

Part (b) – 2pt

We will add noise to our headlines using a few different techniques:

1. Shuffle the words in the headline, taking care that words don’t end up too far from where they were initially
2. Drop (remove) some words
3. Replace some words with a blank word (a <pad> token)
4. Replace some words with a random word

The code for adding these types of noise is provided for you:

def tokenize_and_randomize(headline,
drop_prob=0.1, # probability of dropping a word
blank_prob=0.1, # probability of "blanking" out a word
sub_prob=0.1, # probability of substituting a word with a random one
shuffle_dist=3): # maximum distance to shuffle a word

"""
Add 'noise' to a headline by slightly shuffling the word order,
dropping some words, blanking out some words (replacing with the <pad> token)
and substituting some words with random ones.
"""
headline = [vocab.stoi[w] for w in headline.split()]
n = len(headline)
# shuffle
headline = [headline[i] for i in get_shuffle_index(n, shuffle_dist)]

new_headline = [vocab.stoi['<bos>']]
for w in headline:

if random.random() < drop_prob:
# drop the word
pass

elif random.random() < blank_prob:
# replace with blank word
new_headline.append(vocab.stoi["<pad>"])

elif random.random() < sub_prob:
# substitute word with another word
new_headline.append(random.randint(0, vocab_size - 1))

else:
# keep the original word
new_headline.append(w)

new_headline.append(vocab.stoi['<eos>'])
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return new_headline

def get_shuffle_index(n, max_shuffle_distance):
""" This is a helper function used to shuffle a headline with n words,
where each word is moved at most max_shuffle_distance. The function does
the following:

1. start with the *unshuffled* index of each word, which
is just the values [0, 1, 2, ..., n]

2. perturb these "index" values by a random floating-point value between
[0, max_shuffle_distance]

3. use the sorted position of these values as our new index
"""
index = np.arange(n)
perturbed_index = index + np.random.rand(n) * 3
new_index = sorted(enumerate(perturbed_index), key=lambda x: x[1])
return [index for (index, pert) in new_index]

Call the function tokenize_and_randomize 5 times on a headline of your choice. Make sure to include both your
original headline, and the five new headlines in your report.

# Report your values here. Make sure that you report the actual values,
# and not just the code used to get those values

Part (c) – 3 pt

The training code that we use to train the model is mostly provided for you. The only part we left blank are the
parts from Q2(b). Complete the code, and train a new AutoEncoder model for 1 epoch. You can train your model
for longer if you want, but training tend to take a long time, so we’re only checking to see that your training loss is
trending down.

If you are using Google Colab, you can use a GPU for this portion. Go to “Runtime” => “Change Runtime Type”
and set “Hardware acceleration” to GPU. Your Colab session will restart. You can move your model to the GPU by
typing model.cuda(), and move other tensors to GPU (e.g. xs = xs.cuda()). To move a model back to CPU, type
model.cpu. To move a tensor back, use xs = xs.cpu(). For training, your model and inputs need to be on the same
device.

def train_autoencoder(model, batch_size=64, learning_rate=0.001, num_epochs=10):
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
criterion = nn.CrossEntropyLoss()

for ep in range(num_epochs):
# We will perform data augmentation by re-reading the input each time
field = torchtext.data.Field(sequential=True,

tokenize=tokenize_and_randomize, # <-- data augmentation
include_lengths=True,
batch_first=True,
use_vocab=False, # <-- the tokenization function replaces this
pad_token=vocab.stoi['<pad>'])

dataset = torchtext.data.TabularDataset(train_path, "tsv", [('title', field)])

# This BucketIterator will handle padding of sequences that are not of the same length
train_iter = torchtext.data.BucketIterator(dataset,

batch_size=batch_size,
sort_key=lambda x: len(x.title), # to minimize padding
repeat=False)

for it, ((xs, lengths), _) in enumerate(train_iter):

# Fill in the training code here
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if (it+1) % 100 == 0:
print("[Iter %d] Loss %f" % (it+1, float(loss)))

# Optional: Compute and track validation loss
#val_loss = 0
#val_n = 0
#for it, ((xs, lengths), _) in enumerate(valid_iter):
# zs = model(xs)
# loss = None # TODO
# val_loss += float(loss)

# Include your training curve or output to show that your training loss is trending down

Part (d) – 2 pt

This model requires many epochs (>50) to train, and is quite slow without using a GPU. You can train a
model yourself, or you can load the model weights that we have trained, and available on the course website
https://www.cs.toronto.edu/~lczhang/321/files/p4model.pk (11MB).

Assuming that your AutoEncoder is set up correctly, the following code should run without error.

model = AutoEncoder(10000, 128, 128)
checkpoint_path = '/content/gdrive/My Drive/CSC321/p4model.pk' # Update me
model.load_state_dict(torch.load(checkpoint_path))

Then, repeat your code from Q2(d), for train_data[10].title with temperature settings 0.7, 0.9, and 1.5. Explain
why we generally don’t want the temperature setting to be too small.

# Include the generated sequences and explanation in your PDF report.

headline = train_data[10].title
input_seq = torch.Tensor([vocab.stoi[w] for w in headline]).unsqueeze(0).long()

# ...

Question 4

In parts 2-3, we’ve explored the decoder portion of the autoencoder. In this section, let’s explore the encoder. In
particular, the encoder RNN gives us embeddings of news headlines!

First, let’s load the validation data set:

valid_data = torchtext.data.TabularDataset(
path=valid_path, # data file path
format="tsv", # fields are separated by a tab
fields=[('title', text_field)]) # list of fields (we have only one)

Part (a) – 2 pt

Compute the embeddings of every item in the validation set. Then, store the result in a single PyTorch tensor of
shape [19046, 128], since there are 19,046 headlines in the validation set.

# Write your code here
# Show that your resulting PyTorch tensor has shape `[19046, 128]`
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Part (b) – 2 pt

Find the 5 closest headlines to the headline valid_data[13]. Use the cosine similarity to determine closeness. (Hint:
You can use code from Project 2)

# Write your code here. Make sure to include the actual 5 closest headlines.

Part (c) – 2 pt

Find the 5 closest headlines to another headline of your choice.

# Write your code here.
# Make sure to include the original headline and the 5 closest headlines.

Part (d) – 4 pts

Choose two headlines from the validation set, and find their embeddings. We will interpolate between the two
embeddings.

Find 3 points, equally spaced between the embeddings of your headlines. If we let e0 be the embedding of your first
headline and e4 be the embedding of your second headline, your three points should be:

e1 = 0.75e0 + 0.25e4

e2 = 0.50e0 + 0.50e4

e3 = 0.25e0 + 0.75e4

Decode each of e1, e2 and e3 five times, with a temperature setting that shows some variation in the generated
sequences, while generating sequences that makes sense.

# Write your code here. Include your generated sequences.
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