A Primer on Optimal Transport

Marco Cuturi
: iot Google AI

$$
\text { Enace } y=
$$

book with Gabriel Peyré

A Motivating Example

A Motivating Example

> We collect data
> $\nu_{\text {data }}=\frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i}}$

We fit a parametric family of densities

$$
\left\{p_{\theta}, \theta \in \Theta\right\}
$$

$$
\text { e.g. } \theta=(m, \Sigma) ; p_{\theta}=\mathcal{N}(m, \Sigma)
$$

Statistics 0.1: Density Fitting
$\boldsymbol{p}_{\theta_{1}}$

Statistics 0.1: Density Fitting

We stop when there is a good fit.

Maximum Likelihood Estimation

ON AN ABSOLUTE CRITERION FOR FITTING FREQUENCY CURVES.

By R. A. Fisher, Gonville and Caius College, Cambridge.

1. If we set ourselves the problem, in its frequent occurrence, of finding the arbitrary function of known form, which best suit a observations, we are met at the outset by an which appears to invalidate any results we ma

Maximum Likelihood Estimation

ON AN ABSOLUTE CRITERION FOR FITTING FREQUENCY CURVES.

By R. A. Fisher, Gonville and Caius College, Cambridge.

1. If we set ourselves the problem, in its frequent occurrence, of finding the arbitrary function of known form, which best suit a observations, we are met at the outset by an which appears to invalidate any results we ma

$\log 0=-\infty$
$p_{\theta}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$ must be >0

Maximum Likelihood Estimation

Equivalent to a KL projection in the space of probability measures
$\min _{\boldsymbol{\theta} \in \Theta} \mathrm{KL}\left(\boldsymbol{\nu}_{\text {data }} \| \boldsymbol{p}_{\boldsymbol{\theta}}\right)$

Maximum Likelihood Estimation

Equivalent to a KL projection in the space of probability measures
$\min _{\boldsymbol{\theta} \in \Theta} \mathrm{KL}\left(\boldsymbol{\nu}_{\text {data }} \| \boldsymbol{p}_{\boldsymbol{\theta}}\right)$

In higher dimensional spaces...

Generative Models

Generative Models

latent
space

Generative Models

Goal: find θ such that $f_{\theta \sharp} \boldsymbol{\mu}$ fits $\boldsymbol{\nu}_{\text {data }}$

Generative Models

Goal: find θ such that $f_{\theta \sharp} \boldsymbol{\mu}$ fits $\boldsymbol{\nu}_{\text {data }}$

Generative Models

MLE $\max _{\theta \in \Theta} \frac{1}{N} \sum_{i=1}^{N} \log p_{\theta}\left(x_{i}\right)=\min _{\theta \in \Theta} \mathrm{KL}\left(\nu_{\text {data }} \| p_{\theta}\right)$

Generative Models

ALE
$\max _{\boldsymbol{\theta} \in \Theta} \frac{1}{N} \sum_{i=1}^{N} \log \boldsymbol{f}_{\boldsymbol{\theta} \sharp} \boldsymbol{\mu}\left(\boldsymbol{x}_{\boldsymbol{i}}\right) \quad \min _{\boldsymbol{\theta} \in \Theta} \operatorname{KL}\left(\boldsymbol{\nu}_{\text {data }} \| \boldsymbol{f}_{\boldsymbol{\theta} \sharp \boldsymbol{\mu}}\right)$

Generative Models

Need a more flexible discrepancy function to compare $\nu_{\text {data }}$ and $\boldsymbol{f}_{\boldsymbol{\theta}} \boldsymbol{\mu}$

Workarounds?

- Formulation as adversarial problem [GPM...'14]
$\min _{\theta \in \Theta \text { classifiers }} \max _{g}$ Accuracy $_{g}\left(\left(f_{\theta \sharp} \mu,+1\right),\left(\nu_{\text {data }},-1\right)\right)$

Workarounds?

- Formulation as adversarial problem [GPM...'14]
$\min _{\theta \in \Theta \text { classifiers }} \max _{g}$ Accuracy $_{g}\left(\left(f_{\theta \sharp} \mu,+1\right),\left(\nu_{\text {data }},-1\right)\right)$

Workarounds?

- Formulation as adversarial problem [GPM...'14]
$\min _{\theta \in \Theta \text { classifiers }} \max _{g}$ Accuracy $_{g}\left(\left(f_{\theta \sharp} \mu,+1\right),\left(\nu_{\text {data }},-1\right)\right)$

Workarounds?

- Formulation as adversarial problem [GPM...'14]

Workarounds?

- Formulation as adversarial problem [GPM...'14]
$\min _{\boldsymbol{\theta} \in \Theta} \max _{\text {classifiers }} \operatorname{Accuracy}_{g}\left(\left(\boldsymbol{f}_{\boldsymbol{\theta}} \boldsymbol{\mu},+1\right),\left(\boldsymbol{\nu}_{\text {data }},-1\right)\right)$

Workarounds?

- Formulation as adversarial problem [GPM...'14]
$\min _{\theta \in \Theta} \max _{\text {classifiers }} \operatorname{Accuracy}_{g}\left(\left(\boldsymbol{f}_{\theta \sharp} \boldsymbol{\mu},+1\right),\left(\boldsymbol{\nu}_{\text {data }},-1\right)\right)$ $\theta \in \Theta$ classifiers g

Workarounds?

- Formulation as adversarial problem [GPM...'14]
$\min _{\boldsymbol{\theta} \in \Theta} \max _{\text {classifiers }}^{g}$ Accuracy $_{g}\left(\left(\boldsymbol{f}_{\boldsymbol{\theta}} \boldsymbol{\mu},+1\right),\left(\boldsymbol{\nu}_{\text {data }},-1\right)\right)$
low classification accuracy...
is the goal.

Another idea?

- Use a metric Δ for probability measures, that can handle measures with non-overlapping supports:
$\min _{\theta \in \Theta} \Delta\left(\boldsymbol{\nu}_{\text {data }}, \boldsymbol{p}_{\boldsymbol{\theta}}\right), \quad \boldsymbol{\operatorname { n o t }} \min _{\boldsymbol{\theta} \in \Theta} \mathrm{KL}\left(\boldsymbol{\nu}_{\text {data }} \| \boldsymbol{p}_{\boldsymbol{\theta}}\right)$

Minimum Δ Estimation

By Joseph Berkson
Mayo Clinic, Rochester, Minnesota

COMPUTATIONAL
STATISTICS
\& DATA ANALYSIS

Minimur Hellinger listance estimation for Poisson mixtures

Dimitris Karlis, Evdokia Xekalaki*

Deparment of Suairrics. Athens Liniversidy of Economicz and Bushass, 76 Partssion Siv., 16434 Athens, Greece

Available online at www.sciencedirect.com
science (c)DiRECT

Statistics \& Probahility Tetlers 76 (2006) 1298-1302

On minimum Kantorovich listance estimators
Federico Bassettia, Antonella Bodini ${ }^{\text {b }}$, Eugenio Regazzini ${ }^{\mathrm{a}, *}$

Δ Generative Model Estimation

Generativ
Moment Matching Networks

Yujia Li 1
Kevin Swersky ${ }^{1}$
Richard Zemel ${ }^{1,2}$
${ }^{1}$ Department of Computer Science, University of Toronto, Toronto, ON, CANADA ${ }^{2}$ Canadian Institule for Adyanced Research, Toronto, ON, CANADA

MMD GAN: Towards Deeper Understanding of Moment Matching Network

Chun-Liang Li ${ }^{1, *}$ Wei-Cheng Chang ${ }^{1, *}$ Yu Cheng ${ }^{2}$ Yiming Yang ${ }^{1}$ Barnabás Póczos ${ }^{1}$ ${ }^{1}$ Carnegie Mellon University, ${ }^{2}$ IBM Research
\{chunlial, wchang2, yiming, bapoczos\}@cs.cmu.edu chengyu@us.ibm.com

YuJaliecs.toronto.edu KSWERSKY RCS.TORONTO.EDL

ZEMEL ©CS.TORONTO EDU

Training generative neural networks via Maximum Mean Discrepancy optimization

Gintare Karolina Dziugaite
University of Cambridge

Daniel M. Roy University of Toronto

Δ Generative Model Estimation

Δ Generative Model Estimation

 ${ }^{1}$ Carnegie Mellon University, ${ }^{2}$ IBM Research
\{chunlial,wchang2, yiming, bapoczos\}@cs.cmu.edu chengyu@us.ibm.com

Inference in generative models using the Wasserstein distance
Espen Bernton, Mathieu Gerber, Pierre E. Jacob, Christian P. Robert

Klaus-Robert Müller* Technische Universität Berlin
klaus-robert.mueller@tu-berlin. de

Martin Arjovsky ${ }^{1}$, Soumith Chintala ${ }^{2}$, and Léon Bottou ${ }^{1,2}$
${ }^{1}$ Courant Institute of Mathematical Sciences
${ }^{2}$ Facebook AI Research

Improving GANs Usiņ Optimal Transport

Aude Genevay CEREMADE,
Université Paris-Dauphine

Gabriel Peyré
CNRS and DMA, École Normale Supérieure

Marco Cuturi
ENSAE CREST
Université Paris-Saclay

Tim Salimans* OpenAI
tim@openai.com
Han Zhang**
Rutgers University
han. zhang@cs.rutgers.edu

Minimum Kantorovich Estimation

- Use optimal transport theory, namely Wasserstein distances to define discrepancy Δ.

$$
\min _{\boldsymbol{\theta} \in \Theta} W\left(\boldsymbol{\nu}_{\text {data }}, f_{\theta \sharp} \boldsymbol{\mu}\right)
$$

- Optimal transport? fertile field in mathematics.

Monge

Kantorovich Koopmans Dantzig
Nobel'75

Brenier

Gangbo

Otto

McCann

Villani

Figalli

What is Optimal Transport?

The natural geometry for probability measures

What is Optimal Transport?

The natural geometry for probability measures supported on a metric space.

What is Optimal Transport?

The natural geometry for probability measures supported on a metric space.

What is Optimal Transport?

The natural geometry for probability measures supported on a metric space.

Short Course Outline

1. Introduction to optimal transport
2. Optimal transport algorithms
3. Some Applications

Introduction to OT

- Two examples: moving earth \& soldiers
- Monge problem, Kantorovich problem
- OT as geometry, OT as a loss function

Origins: Monge Problem (1781)

Memoires de l'Académie Royale

$$
\begin{aligned}
& \text { MÉMOIRE } \\
& \text { SUR } L A \\
& \text { THEORIE DES DÉBLAIS } \\
& \text { ET DES REMBLAIS. } \\
& \text { Par M. M O N G e. }
\end{aligned}
$$

Torsqu'on doit tranfporter des terres d'un lieu dans un 1 autre, on a coutume de donner le nom de Déblai au volume des terres que l'on doit tranfporter, \& le nom de Remblai à l'efpace qu'elles doivent occuper après le tranfport.

Origins: Monge Problem (1781)

Memolres de l'Académie Royale

MÉMOIRE

When one has to bring earth from one place to another...

Lorsqu'on doit tranfporter des terres d'un lieu dans un autre, on a coutume de donner le nom de Déblai au volume des terres que l'on doit tranfporter, \& le nom de Remblaỉ à l'efpace qu'elles doivent occuper après le tranfport.

Origins: Monge Problem

Origins: Monge Problem

In the 21st Century...

μ

Origins: Monge Problem

In the 21st Century...

Origins: Monge’s Problem

Origins: Monge’s Problem

Origins: Monge’s Problem

Origins: Monge's Problem

Origins: Monge’s Problem

Origins: Monge’s Problem

Origins: Monge’s Problem

T must map red to blue.

Origins: Monge’s Problem

T must map red to blue.

27

Origins: Monge’s Problem

T must map red to blue.

Origins: Monge’s Problem

T must map red to blue.

Origins：Monge’s Problem

T must map red to blue．

$\vec{A}_{1} \stackrel{\rightharpoonup}{A}_{2} \stackrel{\rightharpoonup}{A_{3}}$

Origins: Monge’s Problem

T must map red to blue.
$\boldsymbol{\mu} \quad T^{-1}(\boldsymbol{B})=\{x \mid T(x) \in \boldsymbol{B}\}$

[^0]
Origins: Monge’s Problem

T must map red to blue. $\boldsymbol{\mu} \quad T^{-1}(\boldsymbol{B})=\{x \mid T(x) \in \boldsymbol{B}\}$

$$
\mu\left(A_{1}\right)+\mu\left(A_{2}\right)+\mu\left(A_{3}\right)=\nu(B)
$$

Origins: Monge’s Problem

T must map red to blue.

B

Origins: Monge's Problem

T must map red to blue.

B

Origins: Monge's Proble

T must map red to blue.

\xrightarrow{B}

Origins: Monge's Proble

T must map red to blue.

\xrightarrow{B}

$$
\forall \boldsymbol{B}, \boldsymbol{\mu}\left(T^{-1}(\boldsymbol{B})\right)=\boldsymbol{\nu}(\boldsymbol{B})
$$

Origins: Monge’s Problem

T must push-forward the red measure towards the blue

Origins: Monge’s Problem

T must push-forward the red measure towards the blue

What T s.t. $T_{\sharp} \boldsymbol{\mu}=\boldsymbol{\nu}$
minimizes $\int \boldsymbol{D}(x, T(x)) \boldsymbol{\mu}(d x)$?

Kantorovich Problem

Kantorovich

1939

Tolstoi
1930

THE DISTRIBUTION OF A PRODUCT FROM SEVERAL SOURCES TO NUMEROUS LOCALITIES

By Frank L. Hitchcoge

1. Statement of the problem. When several factories supply a product to a number of cities we desire the least costly manner of distribution. Due to freight rates and other matters the cost of a ton of product to a particular city will vary according to which factory supplies it, and will also vary from city to city.

Kantorovich Problem

Kantorovich Problem

Kantorovich Problem à la française

Kantorovich Problem

Kantorovich Problem

Easy solution: split the task with proportions 120:90:90 = 4:3:3

Kantorovich Problem

Kantorovich Problem

Transportation matrix

Distance matrix

Kantorovich Problem

The problem is entirely described by counts and a cost/distance matrix

Transportation matrix

Distance matrix

Kantorovich Problem

Distance matrix

1	$d_{1 \mathrm{~A}}$	$d_{1 \mathrm{~B}}$	$d_{1 \mathrm{C}}$
2	$d_{2 \mathrm{~A}}$	$d_{2 \mathrm{~B}}$	$d_{2 \mathrm{C}}$
$d_{3 \mathrm{~A}}$	$d_{3 \mathrm{~B}}$	$d_{3 \mathrm{C}}$	
A		B	C

Kantorovich Problem

Transportation matri			
60	$p_{1 \mathrm{~A}}$	$p_{1 \mathrm{~B}}$	$p_{1 \mathrm{C}}$
90	$p_{2 \mathrm{~A}}$	$p_{2 \mathrm{~B}}$	$p_{2 \mathrm{C}}$
150	$p_{3 \mathrm{~A}}$	$p_{3 \text { B }}$	$p_{3 \mathrm{C}}$
	120	90	90

Distance matrix

1	$d_{1 \mathrm{~A}}$	$d_{1 \mathrm{~B}}$	$d_{1 \mathrm{C}}$
2	$d_{2 \mathrm{~A}}$	$d_{2 \mathrm{~B}}$	$d_{2 \mathrm{C}}$
	$d_{3 \mathrm{~A}}$	$d_{3 \mathrm{~B}}$	$d_{3 \mathrm{C}}$
A		B	C

Kantorovich Problem

Transportation matrix

a_{1}	$p_{1 \mathrm{~A}}$	$p_{1 \mathrm{~B}}$	$p_{1 \mathrm{C}}$
a_{2}	$p_{2 \mathrm{~A}}$	$p_{2 \mathrm{~B}}$	$p_{2 \mathrm{C}}$
a_{3}	$p_{3 \mathrm{~A}}$	$p_{3 \mathrm{~B}}$	$p_{3 \mathrm{C}}$
	$b_{\text {A }}$	$b_{\text {B }}$	$b_{\text {C }}$

Distance matrix

1	$d_{1 \mathrm{~A}}$	$d_{1 \mathrm{~B}}$	$d_{1 \mathrm{C}}$
2	$d_{2 \mathrm{~A}}$	$d_{2 \mathrm{~B}}$	$d_{2 \mathrm{C}}$
	$d_{3 \mathrm{~A}}$	$d_{3 \mathrm{~B}}$	$d_{3 \mathrm{C}}$

Kantorovich Problem

Transportation matrix

Constraints

$$
\begin{gathered}
\forall i \in\{1,2,3\}, \sum_{j \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}\}} p_{i j}=a_{i} \\
\forall j \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}\}, \sum_{i \in\{1,2,3\}} p_{i j}=b_{j} \\
p_{i j} \geq 0
\end{gathered}
$$

Kantorovich Problem

Transportation matrix

Constraints

$$
\forall i \in\{1,2,3\}, \sum_{j \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}\}} p_{i j}=a_{i}
$$

$$
\begin{gathered}
\forall j \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}\}, \sum_{i \in\{1,2,3\}} p_{i j}=b_{j} \\
p_{i j} \geq 0
\end{gathered}
$$

Kantorovich Problem

Transportation matrix

Constraints

$$
\forall i \in\{1,2,3\}, \sum_{j \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}\}} p_{i j}=a_{i}
$$

$$
\begin{gathered}
\forall j \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}\}, \sum_{i \in\{1,2,3\}} p_{i j}=b_{j} \\
p_{i j} \geq 0
\end{gathered}
$$

Distance matrix

1	$d_{1 \mathrm{~A}}$	$d_{1 \mathrm{~B}}$	$d_{1 \mathrm{C}}$
	$d_{2 \mathrm{~A}}$	$d_{2 \mathrm{~B}}$	$d_{2 \mathrm{C}}$
	$d_{3 \mathrm{~A}}$	$d_{3 \mathrm{~B}}$	$d_{3 \mathrm{C}}$
A		B	C

Cost function

$$
C(\boldsymbol{P})=\sum_{j \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}\}} \sum_{i \in\{1,2,3\}} p_{i j} d_{i j}
$$

Problem
$\min _{\text {all valid } P} C$
$C(P)$

Kantorovich Problem

Kantorovich Problem

Kantorovich Problem

Mathematical Formalism

These problems involve discrete and continuous probability measures on a geometric space Ω

Monge Problem

Ω a measurable space, $c: \Omega \times \Omega \rightarrow \mathbb{R}$. μ, ν two probability measures in $\mathcal{P}(\Omega)$.
[Monge'81] problem: find a map $T: \Omega \rightarrow \Omega$

$$
\inf _{T_{\sharp} \mu=\nu} \int_{\Omega} c(x, T(x)) \mu(d x)
$$

Monge Problem

Ω a measurable space, $c: \Omega \times \Omega \rightarrow \mathbb{R}$. μ, ν two probability measures in $\mathcal{P}(\Omega)$.
[Monge'81] problem: find a map $T: \Omega \rightarrow \Omega$ [Brenier'87] If $\Omega=\mathbb{R}^{d}, c=\|\cdot-\cdot\|^{2}$, μ, ν a.c., then $T=\nabla u, u$ convex.

Monge Problem

Ω a measurable space, $c: \Omega \times \Omega \rightarrow \mathbb{R}$. μ, ν two probability measures in $\mathcal{P}(\Omega)$.
[Monge'81] problem: find a map $T: \Omega \rightarrow \Omega$

$$
\inf _{T_{\sharp} \mu=\nu} \int_{\Omega} c(x, T(x)) \mu(d x)
$$

Monge Problem

Ω a measurable space, $c: \Omega \times \Omega \rightarrow \mathbb{R}$. μ, ν two probability measures in $\mathcal{P}(\Omega)$.
[Monge'81] problem: find a map $T: \Omega \rightarrow \Omega$

$$
\inf _{T_{\sharp} \mu=\nu} \int_{\Omega} c(x, T(x)) \mu(d x)
$$

Kantorovich Relaxation

Instead of maps $T: \Omega \rightarrow \Omega$, consider probabilistic maps, i.e. couplings $\boldsymbol{P} \in \mathcal{P}(\Omega \times \Omega)$:

Kantorovich Relaxation

Instead of maps $T: \Omega \rightarrow \Omega$,
consider probabilistic maps,
i.e. couplings $\boldsymbol{F} \in \mathcal{P}(\Omega \times \Omega)$:
$\boldsymbol{P}(Y \mid X=x)$

Kantorovich Relaxation

Instead of maps $T: \Omega \rightarrow \Omega$, consider probabilistic maps,
i.e. couplings $\boldsymbol{P} \in \mathcal{P}(\Omega \times \Omega)$:

$$
\begin{gathered}
\Pi(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text { def }}{=}\{\boldsymbol{P} \in \mathcal{P}(\Omega \times \Omega) \mid \forall \boldsymbol{A}, \boldsymbol{B} \subset \Omega, \\
\boldsymbol{P}(\boldsymbol{A} \times \Omega)=\boldsymbol{\mu}(\boldsymbol{A}), \\
\boldsymbol{P}(\Omega \times \boldsymbol{B})=\boldsymbol{\nu}(\boldsymbol{B})\}
\end{gathered}
$$

Kantorovich Relaxation

$$
\begin{aligned}
& \Pi(\mu, \boldsymbol{\nu} \stackrel{\text { def }}{=}\{\boldsymbol{P} \in \mathcal{P}(\Omega \times \Omega) \mid \forall \boldsymbol{A}, \boldsymbol{B} \subset \Omega, \\
& \boldsymbol{P}(\boldsymbol{A} \times \Omega)=\mu(\boldsymbol{A}), \boldsymbol{P}(\Omega \times \boldsymbol{B})=\boldsymbol{\nu}(\boldsymbol{B})\}
\end{aligned}
$$

Kantorovich Relaxation

$$
\begin{aligned}
& \Pi(\mu, \boldsymbol{\nu} \stackrel{\text { def }}{=}\{\boldsymbol{P} \in \mathcal{P}(\Omega \times \Omega) \mid \forall \boldsymbol{A}, \boldsymbol{B} \subset \Omega, \\
& \boldsymbol{P}(\boldsymbol{A} \times \Omega)=\mu(\boldsymbol{A}), \boldsymbol{P}(\Omega \times \boldsymbol{B})=\boldsymbol{\nu}(\boldsymbol{B})\}
\end{aligned}
$$

Kantorovich Problem

$$
\inf _{T_{\sharp \mu=\nu}} \int_{\Omega} c(x, T(x)) \mu(d x) \text { MONGE }
$$

Def. Given $\boldsymbol{\mu}, \boldsymbol{\nu}$ in $\mathcal{P}(\Omega)$; a cost function c on $\Omega \times \Omega$, the Kantorovich problem is

$$
\inf _{P \in \Pi(\mu, \nu)} \iint c(x, y) P(d x, d y)
$$

Kantorovich Problem

Def. Given μ, ν in $\mathcal{P}(\Omega)$; a cost function
c on $\Omega \times \Omega$, the Kantorovich problem is

$$
\inf _{\boldsymbol{P} \in \Pi(\mu, \nu)} \iint c(x, y) \boldsymbol{P}(d x, d y)
$$

PRIMAL

Kantorovich Problem

Def. Given $\boldsymbol{\mu}, \boldsymbol{\nu}$ in $\mathcal{P}(\Omega)$; a cost function c on $\Omega \times \Omega$, the Kantorovich problem is

$$
\inf _{P \in \Pi(\mu, \nu)} \iint c(x, y) \boldsymbol{P}(d x, d y)
$$

Kantorovich Problem

Def. Given $\boldsymbol{\mu}, \boldsymbol{\nu}$ in $\mathcal{P}(\Omega)$; a cost function c on $\Omega \times \Omega$, the Kantorovich problem is

$$
\inf _{P \in \Pi(\mu, \nu)} \iint c(x, y) \boldsymbol{P}(d x, d y)
$$

PRIMAL
For two real-valued functions $\varphi, \boldsymbol{\psi}$ on Ω,

$$
(\varphi \oplus \boldsymbol{\psi})(x, y) \stackrel{\text { def }}{=} \varphi(x)+\boldsymbol{\psi}(y)
$$

Kantorovich Problem

Def. Given $\boldsymbol{\mu}, \boldsymbol{\nu}$ in $\mathcal{P}(\Omega)$; a cost function c on $\Omega \times \Omega$, the Kantorovich problem is

$$
\inf _{P \in \Pi(\mu, \nu)} \iint c(x, y) \boldsymbol{P}(d x, d y)
$$

PRIMAL
$\sup _{\varphi \in L_{1}(\mu), \psi \in L_{1}(\nu)} \int \varphi d \mu+\int \psi d \nu$. $\varphi \oplus \psi \leq c$

Deriving Kantorovich Duality

$$
\begin{aligned}
\iota_{\Pi}(P) & =\sup _{\varphi, \psi}\left[\int \varphi d \mu+\int \psi d \nu-\iint \varphi \oplus \psi d P\right] \\
& = \begin{cases}0 & \text { if } P \in \Pi(\mu, \nu), \\
+\infty & \text { otherwise. }\end{cases}
\end{aligned}
$$

Deriving Kantorovich Duality

$$
\begin{aligned}
\iota_{\Pi}(\boldsymbol{P}) & =\sup _{\varphi, \boldsymbol{\psi}}\left[\int \varphi d \mu+\int \psi d \boldsymbol{\nu}-\iint \varphi \oplus \boldsymbol{\psi} d \boldsymbol{P}\right] \\
& = \begin{cases}0 & \text { if } \boldsymbol{P} \in \Pi(\mu, \boldsymbol{\nu}), \\
+\infty & \text { otherwise. }\end{cases}
\end{aligned}
$$

$$
\inf _{\boldsymbol{P} \in \Pi(\mu, \nu)} \iint c d \boldsymbol{P}
$$

Deriving Kantorovich Duality

$$
\begin{aligned}
\iota_{\Pi}(\boldsymbol{P}) & =\sup _{\varphi, \boldsymbol{\psi}}\left[\int \varphi d \boldsymbol{\mu}+\int \boldsymbol{\psi} d \boldsymbol{\nu}-\iint \varphi \oplus \psi d \boldsymbol{P}\right] \\
& = \begin{cases}0 & \text { if } \boldsymbol{P} \in \Pi(\boldsymbol{\mu}, \boldsymbol{\nu}) \\
+\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
\inf _{P \in \Pi(\mu, \boldsymbol{v})} \iint c d P
$$

$$
\inf _{P \in \mathcal{P}_{+}\left(\Omega^{2}\right)} \iint c d \boldsymbol{P}+\iota_{\Pi}(\boldsymbol{P})
$$

Deriving Kantorovich Duality

$$
\begin{aligned}
\iota_{\Pi}(\boldsymbol{P}) & =\sup _{\varphi, \boldsymbol{\psi}}\left[\int \varphi d \mu+\int \psi d \boldsymbol{\nu}-\iint \varphi \oplus \boldsymbol{\psi} d \boldsymbol{P}\right] \\
& = \begin{cases}0 & \text { if } \boldsymbol{P} \in \Pi(\mu, \boldsymbol{\nu}) \\
+\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
\inf _{P \in \mathcal{P}_{+}\left(\Omega^{2}\right)} \iint c d \boldsymbol{P}+\iota_{\Pi}(\boldsymbol{P})
$$

Deriving Kantorovich Duality

$\inf _{\boldsymbol{P} \in \mathcal{P}_{+}\left(\Omega^{2}\right)} \iint c d \boldsymbol{P}+\iota_{\Pi}(\boldsymbol{P})$

$\inf _{P \in \mathcal{P}_{+}\left(\Omega^{2}\right)} \iint c d P+\sup _{\varphi, \psi} \int \varphi d \mu+\int \psi d \nu-\iint \varphi \oplus \psi d P$

Deriving Kantorovich Duality

$$
\inf _{P \in \mathcal{P}_{+}\left(\Omega^{2}\right)} \iint c d P+\iota_{\Pi}(P)
$$

$\inf _{\boldsymbol{P} \in \mathcal{P}_{+}\left(\Omega^{2}\right)} \sup _{\varphi, \psi} \iint c d \boldsymbol{P}+\int \varphi d \mu+\int \psi d \boldsymbol{\nu}-\iint \varphi \oplus \psi d \boldsymbol{P}$

Deriving Kantorovich Duality

$$
\inf _{P \in \mathcal{P}_{+}\left(\Omega^{2}\right)} \iint c d P+\iota_{\Pi}(P)
$$

$\inf _{P \in \mathcal{P}_{+}\left(\Omega^{2}\right)} \sup _{\varphi, \psi} \iint c d P-\iint \varphi \oplus \psi d P+\int \varphi d \mu+\int \psi d \nu$

Deriving Kantorovich Duality

$$
\inf _{P \in \mathcal{P}_{+}\left(\Omega^{2}\right)} \iint c d \boldsymbol{P}+\iota_{\Pi}(\boldsymbol{P})
$$

$\inf _{P \in \mathcal{P}_{+}\left(\Omega^{2}\right)} \sup _{\varphi, \psi} \iint(c-\varphi \oplus \psi) d P \quad+\int \varphi d \mu+\int \psi d \nu$

Deriving Kantorovich Duality

$$
\inf _{P \in \mathcal{P}_{+}\left(\Omega^{2}\right)} \iint c d \boldsymbol{P}+\iota_{\Pi}(\boldsymbol{P})
$$

$\sup _{\varphi, \psi P \in \mathcal{P}_{+}\left(\Omega^{2}\right)} \inf _{\iint}(c-\varphi \oplus \psi) d P \quad+\int \varphi d \mu+\int \psi d \nu$

Deriving Kantorovich Duality

$$
\inf _{P \in \mathcal{P}_{+}\left(\Omega^{2}\right)} \iint c d P+\iota_{\Pi}(P)
$$

$\sup _{\varphi, \psi} \inf _{P \in \mathcal{P}_{+}\left(\Omega^{2}\right)} \iint(c-\varphi \oplus \psi) d P \quad+\int \varphi d \mu+\int \psi d \nu$

Deriving Kantorovich Duality

$$
\inf _{P \in \mathcal{P}_{+}\left(\Omega^{2}\right)} \iint c d \boldsymbol{P}+\iota_{\Pi}(\boldsymbol{P})
$$

$$
\begin{aligned}
& \sup _{\varphi, \psi} \inf _{P \in \mathcal{P}_{+}\left(\Omega^{2}\right)} \iint(c-\varphi \oplus \psi) d P \quad+\int \varphi d \mu+\int \psi d \nu \\
& \inf _{P \in \mathcal{P}_{+}(\Omega)} \iint(c-\varphi \oplus \psi) d P= \begin{cases}0 & \text { if } c-\varphi \oplus \psi \geq 0 . \\
-\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

Deriving Kantorovich Duality

$$
\inf _{P \in \mathcal{P}_{+}\left(\Omega^{2}\right)} \iint c d P+\iota_{\Pi}(\boldsymbol{P})
$$

$$
\sup _{\varphi, \psi} \inf _{P \in \mathcal{P}_{+}\left(\Omega^{2}\right)} \iint(c-\varphi \oplus \psi) d P \quad+\int \varphi d \mu+\int \psi d \nu
$$

$$
\inf _{P \in \mathcal{P}_{+}(\Omega)} \iint(c-\varphi \oplus \boldsymbol{\psi}) d \boldsymbol{P}= \begin{cases}0 & \text { if } c-\varphi \oplus \boldsymbol{\psi} \geq 0 . \\ -\infty & \text { otherwise }\end{cases}
$$

$$
\sup _{\varphi \oplus \psi \leq c} \int \varphi d \mu+\int \psi d \nu
$$

DUAL

Wasserstein Distances

Let $p \geq 1$. Let $c(x, y):=D^{p}(x, y)$, a metric.

Def. The p-Wasserstein distance between $\boldsymbol{\mu}, \boldsymbol{\nu}$ in $\mathcal{P}(\Omega)$ is
$W_{p}(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text { def }}{=}\left(\inf _{P \in \Pi(\mu, \boldsymbol{\nu})} \iint D(x, y)^{p} P(d x, d y)\right)^{1 / p}$

Wasserstein Distances

Let $p \geq 1$. Let $c(x, y):=D^{p}(x, y)$, a metric.

Def. The p-Wasserstein distance between μ, ν in $\mathcal{P}(\Omega)$ is
$W_{p}^{P}(\mu, \boldsymbol{\nu}) \stackrel{\text { def }}{=}\left(\inf _{P \in \Pi(\mu, \nu)} \iint D(x, y)^{p} P(d x, d y)\right)^{\text {+fP }}$.

Kantorovich Duality

$$
W_{p}^{p}(\boldsymbol{\mu}, \boldsymbol{\nu})=
$$

$$
\sup _{\substack{\varphi \in L_{1}(\mu), \boldsymbol{\psi} \in L_{1}(\nu) \\ \varphi(x)+\boldsymbol{\psi}(y) \leq D^{p}(x, y)}} \int \varphi d \mu+\int \psi d \nu
$$

- Kantorovich Duality is interesting from a computational perspective: easier to store 2 functions than a whole coupling.
- D transforms: go from two to one dual potential.

D transforms

$$
\begin{aligned}
& \mid W_{p}^{p}(\mu, \nu)=\sup _{\substack{\varphi \in L_{1}(\mu), \psi \in L_{1}(\nu) \\
\varphi(x)+\psi(y) \leq D^{p}(x, y)}} \int \varphi d \mu+\int \psi d \boldsymbol{\nu} . \\
& \text { Imagine we choose a } \varphi . \text { Can we find a good } \boldsymbol{\psi} \text { ? }
\end{aligned}
$$

D transforms

$$
W_{p}^{p}(\boldsymbol{\mu}, \boldsymbol{\nu})=\sup _{\substack{\varphi \in L_{1}(\boldsymbol{\mu}), \boldsymbol{\psi} \in L_{1}(\boldsymbol{\nu}) \\ \varphi(x)+\boldsymbol{\psi}(y) \leq D^{p}(x, y)}}
$$

Imagine we choose a φ. Can we find a good ψ ? We need that $\boldsymbol{\psi}$ satisfies for all $\boldsymbol{x}, \boldsymbol{y}$

$$
\varphi(\boldsymbol{x})+\boldsymbol{\psi}(\boldsymbol{y}) \leq D^{p}(\boldsymbol{x}, \boldsymbol{y})
$$

D transforms

$$
W_{p}^{p}(\boldsymbol{\mu}, \boldsymbol{\nu})=\sup _{\substack{\varphi \in L_{1}(\boldsymbol{\mu}), \boldsymbol{\psi} \in L_{1}(\boldsymbol{\nu}) \\ \varphi(x)+\boldsymbol{\psi}(y) \leq D^{p}(x, y)}}
$$

Imagine we choose a φ. Can we find a good ψ ? We need that $\boldsymbol{\psi}$ satisfies for all $\boldsymbol{x}, \boldsymbol{y}$

$$
\begin{aligned}
& \varphi(x)+\boldsymbol{\psi}(\boldsymbol{y}) \leq D^{p}(\boldsymbol{x}, \boldsymbol{y}) \\
& \psi(\boldsymbol{y}) \leq D^{p}(\boldsymbol{x}, \boldsymbol{y})-\varphi(x)
\end{aligned}
$$

D transforms

$$
W_{p}^{p}(\mu, \boldsymbol{\nu})=
$$ sup

$$
\begin{gathered}
\varphi \in L_{1}(\boldsymbol{\mu}), \boldsymbol{\psi} \in L_{1}(\boldsymbol{\nu}) \\
\varphi(x)+\boldsymbol{\psi}(y) \leq D^{p}(x, y)
\end{gathered}
$$

Imagine we choose a φ. Can we find a $\operatorname{good} \psi$? We need that $\boldsymbol{\psi}$ satisfies for all $\boldsymbol{x}, \boldsymbol{y}$

$$
\begin{gathered}
\varphi(x)+\psi(y) \leq D^{p}(x, y) \\
\psi(\boldsymbol{y}) \leq D^{p}(x, y)-\varphi(x) \\
\psi(\boldsymbol{y}) \leq \inf _{x} D^{p}(x, y)-\varphi(x)
\end{gathered}
$$

D transforms

$$
W_{p}^{p}(\boldsymbol{\mu}, \boldsymbol{\nu})=\sup _{\substack{\varphi \in L_{1}(\boldsymbol{\mu}), \boldsymbol{\psi} \in L_{1}(\boldsymbol{\nu}) \\ \varphi(x)+\boldsymbol{\psi}(y) \leq D^{p}(x, y)}}
$$

For given φ, cannot get a better ψ than

$$
\bar{\varphi}(\boldsymbol{y}) \stackrel{\text { def }}{=} \inf _{x} D^{p}(x, y)-\varphi(x)
$$

D transforms

$$
W_{p}^{p}(\boldsymbol{\mu}, \boldsymbol{\nu})=\sup _{\substack{\varphi \in L_{1}(\mu), \boldsymbol{\psi} \in L_{1}(\boldsymbol{\nu}) \\ \varphi(x)+\boldsymbol{\psi}(y) \leq D^{p}(x, y)}} \int \varphi d \mu+\int \boldsymbol{\psi} d \boldsymbol{\nu}
$$

DUAL
For given φ, cannot get a better ψ than

$$
\bar{\varphi}(\boldsymbol{y}) \stackrel{\text { def }}{=} \inf _{x} D^{p}(\boldsymbol{x}, \boldsymbol{y})-\varphi(\boldsymbol{x})
$$

$$
W_{p}^{p}(\mu, \nu)=\sup _{\varphi} \int \varphi d \mu+\int \bar{\varphi} \bar{\varphi} d \nu
$$

D transforms

$$
\bar{\varphi}(\boldsymbol{y}) \stackrel{\text { def }}{=} \inf _{x} D^{p}(x, \boldsymbol{y})-\varphi(x) .
$$

$$
\bar{\psi}(x)=\inf _{y} D^{p}(x, y)-\boldsymbol{\psi}(\boldsymbol{y}) .
$$

D transforms

$$
\bar{\varphi}(\boldsymbol{y}) \stackrel{\text { def }}{=} \inf _{x} D^{p}(x, y)-\varphi(x) .
$$

$$
\bar{\psi}(x)=\inf _{y} D^{p}(x, y)-\psi(y) .
$$

$W_{p}^{p}(\mu, \nu)=\sup _{\varphi} \int \overline{\bar{\varphi}} d \mu+\int \bar{\varphi} d \nu$.

D transforms

$$
\bar{\varphi}(\boldsymbol{y}) \stackrel{\text { def }}{=} \inf _{x} D^{p}(x, y)-\varphi(x) .
$$

$$
\bar{\psi}(x)=\inf _{y} D^{p}(x, y)-\boldsymbol{\psi}(\boldsymbol{y})
$$

$W_{p}^{p}(\mu, \nu)=\sup _{\varphi} \int \overline{\bar{\varphi}} d \mu+\int \bar{\varphi} d \nu$.

D transforms

$$
\bar{\varphi}(y) \stackrel{\text { def }}{=} \inf _{x} D^{p}(x, y)-\varphi(x) .
$$

$\bar{\psi}(x)=\inf _{y} D^{p}(x, y)-\psi(y)$.
$W_{p}^{p}(\mu, \nu)=\sup _{\varphi} \int \overline{\bar{\varphi}} d \mu+\int \bar{\varphi} d \nu$.
For all φ, we have $\overline{\bar{\varphi}}=\bar{\varphi}$

D transforms

$$
\bar{\varphi}(\boldsymbol{y}) \stackrel{\text { def }}{=} \inf _{x} D^{p}(x, \boldsymbol{y})-\varphi(x) .
$$

$\bar{\psi}(x)=\inf _{y} D^{p}(x, y)-\psi(y)$.
$W_{p}^{p}(\mu, \nu)=\sup _{\varphi} \int \overline{\bar{\varphi}} d \mu+\int \bar{\varphi} d \nu$.
For all φ, we have $\overline{\bar{\varphi}}=\bar{\varphi}$
φ is D^{p}-concave if $\exists \phi: \varphi=\bar{\phi}$
φ is D^{p}-concave $\Rightarrow \bar{\varphi}=\varphi$

D transforms

$$
\bar{\varphi}(\boldsymbol{y}) \stackrel{\text { def }}{=} \inf _{x} D^{p}(x, y)-\varphi(x) .
$$

$$
\bar{\psi}(x)=\inf _{y} D^{p}(x, y)-\psi(y) .
$$

$$
W_{p}^{p}(\mu, \nu)=\sup _{\varphi} \int \overline{\bar{\varphi}} d \mu+\int \bar{\varphi} d \nu .
$$

$$
W_{p}^{p}(\mu, \nu)=
$$ $\sup _{\varphi \text { is } D^{p} \text {-concave }} \int \varphi d \mu+\int \bar{\varphi} d \nu$.

D transforms, W_{1}

Prop. If $c=D$, namely $p=1$, then
φ is D-concave $\Leftrightarrow \bar{\varphi}=-\varphi, \varphi$ is 1 -Lipschitz
For given $x, \bar{\varphi}_{x}(\boldsymbol{y}) \stackrel{\text { def }}{=} D(x, y)-\varphi(x)$ is 1-Lipschitz.

D transforms, W_{1}

Prop. If $c=D$, namely $p=1$, then
φ is D-concave $\Leftrightarrow \bar{\varphi}=-\varphi, \varphi$ is 1-Lipschitz
For given $x, \bar{\varphi}_{x}(\boldsymbol{y}) \stackrel{\text { def }}{=} D(x, y)-\varphi(x)$ is 1-Lipschitz.

$$
\bar{\varphi}_{x}(\boldsymbol{y})-\bar{\varphi}_{x}\left(\boldsymbol{y}^{\prime}\right)=\boldsymbol{D}(x, y)-\boldsymbol{D}\left(x, y^{\prime}\right) \leq \boldsymbol{D}\left(\boldsymbol{y}, \boldsymbol{y}^{\prime}\right)
$$

D transforms, W_{1}

Prop. If $c=D$, namely $p=1$, then
φ is D-concave $\Leftrightarrow \bar{\varphi}=-\varphi, \varphi$ is 1 -Lipschitz
For given $x, \bar{\varphi}_{x}(\boldsymbol{y}) \stackrel{\text { def }}{=} D(x, y)-\varphi(x)$ is 1-Lipschitz.

D transforms, W_{1}

Prop. If $c=D$, namely $p=1$, then
φ is D-concave $\Leftrightarrow \bar{\varphi}=-\varphi, \varphi$ is 1-Lipschitz
For given $x, \bar{\varphi}_{x}(\boldsymbol{y}) \stackrel{\text { def }}{=} \boldsymbol{D}(x, \boldsymbol{y})-\varphi(x)$ is 1-Lipschitz.
$\Rightarrow \bar{\varphi}(\boldsymbol{y})=\inf _{x} \bar{\varphi}_{x}(\boldsymbol{y})$ is 1-Lipschitz.
$\Rightarrow \bar{\varphi}(y)-\bar{\varphi}(x) \leq D(x, y)$

D transforms, W_{1}

Prop. If $c=D$, namely $p=1$, then
φ is D-concave $\Leftrightarrow \bar{\varphi}=-\varphi, \varphi$ is 1-Lipschitz
For given $x, \bar{\varphi}_{x}(\boldsymbol{y}) \stackrel{\text { def }}{=} \boldsymbol{D}(x, \boldsymbol{y})-\varphi(x)$ is 1-Lipschitz.
$\Rightarrow \bar{\varphi}(\boldsymbol{y})=\inf _{x} \bar{\varphi}_{x}(\boldsymbol{y})$ is 1-Lipschitz.
$\Rightarrow \bar{\varphi}(\boldsymbol{y})-\bar{\varphi}(x) \leq D(x, y)$
$\Rightarrow-\bar{\varphi}(x) \leq D(x, y)-\bar{\varphi}(y)$
$\Rightarrow-\bar{\varphi}(x) \leq \inf _{y} D(x, y)-\bar{\varphi}(y)$

D transforms, W_{1}

Prop. If $c=D$, namely $p=1$, then
φ is D-concave $\Leftrightarrow \bar{\varphi}=-\varphi, \varphi$ is 1-Lipschitz
For given $x, \bar{\varphi}_{x}(\boldsymbol{y}) \stackrel{\text { def }}{=} D(x, y)-\varphi(x)$ is 1-Lipschitz.
$\Rightarrow \bar{\varphi}(\boldsymbol{y})=\inf _{x} \bar{\varphi}_{x}(\boldsymbol{y})$ is 1-Lipschitz.
$\Rightarrow \bar{\varphi}(y)-\bar{\varphi}(x) \leq D(x, y)$
$\Rightarrow-\bar{\varphi}(x) \leq D(x, y)-\bar{\varphi}(y)$
$\Rightarrow-\bar{\varphi}(x) \leq \inf _{\boldsymbol{y}} D(x, y)-\bar{\varphi}(\boldsymbol{y})$
$\Rightarrow-\bar{\varphi}(x) \leq \inf _{y} D(x, y)-\bar{\varphi}(y) \leq-\bar{\varphi}(x)$

D transforms, W_{1}

Prop. If $c=D$, namely $p=1$, then φ is D-concave $\Leftrightarrow \bar{\varphi}=-\varphi, \varphi$ is 1-Lipschitz

For given $x, \bar{\varphi}_{x}(\boldsymbol{y}) \stackrel{\text { def }}{=} D(x, y)-\varphi(x)$ is 1-Lipschitz.
$\Rightarrow \bar{\varphi}(\boldsymbol{y})=\inf _{x} \bar{\varphi}_{x}(\boldsymbol{y})$ is 1-Lipschitz.
$\Rightarrow \bar{\varphi}(y)-\bar{\varphi}(x) \leq D(x, y)$
$\Rightarrow-\bar{\varphi}(x) \leq D(x, y)-\bar{\varphi}(y)$
$\Rightarrow-\bar{\varphi}(x) \leq \inf _{\boldsymbol{y}} D(x, y)-\bar{\varphi}(\boldsymbol{y})$
$\Rightarrow-\bar{\varphi}(x) \leq \inf _{\boldsymbol{y}} D(x, y)-\bar{\varphi}(y) \leq-\bar{\varphi}(x)$
$\Rightarrow-\bar{\varphi}(x) \leq \overline{\bar{\varphi}}(x) \leq-\bar{\varphi}(x)$ and $\bar{\varphi}(x)=-\varphi(x)$

D transforms, W_{1}

$$
W_{1}(\boldsymbol{\mu}, \boldsymbol{\nu})=
$$

Prop. If $c=D$, then
φ is D-concave $\Leftrightarrow \bar{\varphi}=-\varphi, \varphi$ is 1 -Lipschitz

$$
W_{1}(\boldsymbol{\mu}, \boldsymbol{\nu})=\sup _{\varphi \text { 1-Lipschitz }} \int \varphi(d \boldsymbol{\mu}-d \boldsymbol{\nu}) .
$$

Links between Monge \& Kantorovich

Prop. For "well behaved" costs c, if μ has a density then an optimal Monge map T^{*} between μ and ν must exist.

Prop. In that case

$$
P^{\star}:=\left(\operatorname{Id}, T^{\star}\right)_{\sharp} \mu \in \Pi(\mu, \nu)
$$

is also optimal for the Kantorovich problem. [Brenier'91] [Smith\&Knott'87] [McCann'01]

Optimal Transport Geometry

Very different geometry than standard information divergences (KL, Euclidean)

Optimal Transport Geometry

Very different geometry than standard information divergences (KL, Euclidean)

Optimal Transport Geometry

Very different geometry than standard information divergences (KL, Euclidean)

Optimal Transport Geometry

Very different geometry than standard information divergences (KL, Euclidean)

Optimal transport interpolation

Optimal Transport Geometry

Very different geometry than standard information divergences (KL, Euclidean)

Optimal Transport Geometry

Very different geometry than standard information divergences (KL, Euclidean)

Optimal Transport Geometry

Very different geometry than standard information divergences (KL, Euclidean)

Computational OT

Up to 2010: OT solvers
 $W_{p}(\mu, \boldsymbol{\nu})=?$

Goal now: use OT as a loss or fidelity term
$\operatorname{argmin} F\left(W_{p}\left(\boldsymbol{\mu}, \boldsymbol{\nu}_{\mathbf{1}}\right), W_{p}\left(\boldsymbol{\mu}, \boldsymbol{\nu}_{\mathbf{2}}\right), \ldots, \boldsymbol{\mu}\right)=?$ $\mu \in \mathcal{P}(\Omega)$

$$
\nabla_{\mu} W_{p}\left(\mu, \nu_{1}\right)=?
$$

2. How to compute OT

- Typology: discrete/continuous problems
- Easy cases, zoo of solvers
- Entropic regularization
- Differentiability of the W distance

How can we compute OT?

Discrete - Discrete

How can we compute OT?

Stochastic
Continuous - Continuous
Optimization
PDE's
[Genevay'16]
[Benamou'98]

Easy (1): Univariate Measures

Remark. If $\Omega=\mathbb{R}, c(x, y)=c(|x-y|)$, c convex, $F_{\mu}^{-1}, F_{\nu}^{-1}$ quantile functions,

$$
W(\mu, \boldsymbol{\nu})=\int_{0}^{1} c\left(\left|F_{\mu}^{-1}(x)-F_{\nu}^{-1}(x)\right|\right) d x
$$

Easy (1): Univariate Measures

Remark. If $\Omega=\mathbb{R}, \boldsymbol{c}(x, y)=\boldsymbol{c}(|x-y|)$, c convex, $F_{\mu}^{-1}, F_{\nu}^{-1}$ quantile functions,

$$
W(\mu, \boldsymbol{\nu})=\int_{0}^{1} c\left(\left|F_{\mu}^{-1}(x)-F_{\nu}^{-1}(x)\right|\right) d x
$$

μ

ν

Easy (1): Univariate Measures

Remark. If $\Omega=\mathbb{R}, \boldsymbol{c}(x, y)=c(|x-y|)$, c convex, $F_{\mu}^{-1}, F_{\nu}^{-1}$ quantile functions,

$$
W(\mu, \boldsymbol{\nu})=\int_{0}^{1} c\left(\left|F_{\mu}^{-1}(x)-F_{\nu}^{-1}(x)\right|\right) d x
$$

Easy (1): Univariate Measures

Remark. If $\Omega=\mathbb{R}, c(x, y)=c(|x-y|)$, c convex, $F_{\mu}^{-1}, F_{\nu}^{-1}$ quantile functions,

$$
W(\boldsymbol{\mu}, \boldsymbol{\nu})=\int_{0}^{1} c\left(\left|F_{\mu}^{-1}(x)-F_{\nu}^{-1}(x)\right|\right) d x
$$

Easy (2): Gaussian Measures

Remark. If $\Omega=\mathbb{R}^{d}, c(x, y)=\|x-y\|^{2}$, and $\boldsymbol{\mu}=\mathcal{N}\left(\mathbf{m}_{\mu}, \boldsymbol{\Sigma}_{\mu}\right), \boldsymbol{\nu}=\mathcal{N}\left(\mathbf{m}_{\nu}, \boldsymbol{\Sigma}_{\boldsymbol{\nu}}\right)$ then

$$
W_{2}^{2}(\boldsymbol{\mu}, \boldsymbol{\nu})=\left\|\mathbf{m}_{\mu}-\mathbf{m}_{\nu}\right\|^{2}+B\left(\boldsymbol{\Sigma}_{\mu}, \boldsymbol{\Sigma}_{\boldsymbol{\nu}}\right)^{2}
$$

where B is the Bures metric
$B\left(\boldsymbol{\Sigma}_{\mu}, \boldsymbol{\Sigma}_{\nu}\right)^{2}=\operatorname{trace}\left(\boldsymbol{\Sigma}_{\mu}+\boldsymbol{\Sigma}_{\nu}-2\left(\boldsymbol{\Sigma}_{\mu}^{1 / 2} \boldsymbol{\Sigma}_{\nu} \boldsymbol{\Sigma}_{\mu}^{1 / 2}\right)^{1 / 2}\right)$.

Easy (2): Gaussian Measures

Remark. If $\Omega=\mathbb{R}^{d}, c(x, y)=\|x-y\|^{2}$, and $\boldsymbol{\mu}=\mathcal{N}\left(\mathbf{m}_{\mu}, \boldsymbol{\Sigma}_{\mu}\right), \boldsymbol{\nu}=\mathcal{N}\left(\mathbf{m}_{\nu}, \boldsymbol{\Sigma}_{\nu}\right)$ then

$$
W_{2}^{2}(\mu, \boldsymbol{\nu})=\left\|\mathbf{m}_{\mu}-\mathbf{m}_{\nu}\right\|^{2}+B\left(\boldsymbol{\Sigma}_{\mu}, \boldsymbol{\Sigma}_{\boldsymbol{\nu}}\right)^{2}
$$

where B is the Bures metric
$B\left(\boldsymbol{\Sigma}_{\mu}, \boldsymbol{\Sigma}_{\nu}\right)^{2}=\operatorname{trace}\left(\boldsymbol{\Sigma}_{\mu}+\boldsymbol{\Sigma}_{\nu}-2\left(\boldsymbol{\Sigma}_{\mu}^{1 / 2} \boldsymbol{\Sigma}_{\nu} \boldsymbol{\Sigma}_{\mu}^{1 / 2}\right)^{1 / 2}\right)$.
The map $T: x \mapsto \mathbf{m}_{\nu}+A\left(x-\mathbf{m}_{\mu}\right)$ is optimal, where $A=\Sigma_{\mu}^{-\frac{1}{2}}\left(\Sigma_{\mu}^{\frac{1}{2}} \Sigma_{\nu} \Sigma_{\mu}^{\frac{1}{2}}\right)^{\frac{1}{2}} \Sigma_{\mu}^{-\frac{1}{2}}$

Easy (2): Gaussian Measures

Easy (2): Gaussian Measures

$$
T=\nabla \psi: x \mapsto \mathbf{m}_{\nu}+A\left(x-\mathbf{m}_{\mu}\right)
$$

$$
\psi(x)=\mathbf{m}_{\nu}^{T} x+\frac{1}{2}\left(x-\mathbf{m}_{\mu}\right)^{T} A\left(x-\mathbf{m}_{\mu}\right)
$$

Easy (2): Gaussian Measures

W_{2} geodesic $\left(\mu_{t}\right)_{t}$ from μ_{0} to $\mu_{1}(t \in[0,1])$ and extrapolation

$$
\Sigma_{t}=((1-t) I+t A) \Sigma_{\mu}((1-t) I+t A)
$$

Easy (2): Gaussian Measures

W_{2} geodesic $\left(\mu_{t}\right)_{t}$ from μ_{0} to $\mu_{1}(t \in[0,1])$ and extrapolation

Easy (3): Elliptical Distributions

$$
T=\nabla \psi: x \mapsto \mathbf{m}_{\nu}+A\left(x-\mathbf{m}_{\mu}\right)
$$

[Gelbrich'92] shows that the linear map T is also optimal for elliptically contoured distributions, i.e. distributions whose MGF are

$$
\begin{gathered}
\phi_{X}(\mathbf{t})=\mathbb{E}\left[e^{\sqrt{-1} \mathbf{t}^{T} X}\right]=e^{\sqrt{-1} \mathbf{t}^{T} \mathbf{m}} g\left(\mathbf{t}^{T} C \mathbf{t}\right) \\
g \text { of positive type. }
\end{gathered}
$$

Same formula applies, but variance is a factor (depends on g) of \mathbf{C}, hence Bures factor is scaled.

Easy (3): Uniform Ellipses

$$
\mathbf{B}_{2}=\left[\begin{array}{ccc}
8 & -5 & 0 \\
-5 & 8 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Wasserstein Between Two Diracs

Linear Assignment \subset Wasserstein

OT on Two Empirical Measures

OT on Two Empirical Measures

$$
\nu=\sum_{j=1} b_{j} \delta_{y_{j}}
$$

(Ω, D)

Wasserstein on Empirical Measures

Consider $\mu=\sum_{i=1}^{n} a_{i} \delta_{x_{i}}$ and $\nu=\sum_{j=1}^{m} b_{j} \delta_{y_{j}}$.
$M_{\boldsymbol{X} \boldsymbol{Y}} \stackrel{\text { def }}{=}\left[D\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{j}\right)^{p}\right]_{i j}$
$U(\boldsymbol{a}, \boldsymbol{b}) \stackrel{\text { def }}{=}\left\{\boldsymbol{P} \in \mathbb{R}_{+}^{n \times m} \mid \boldsymbol{P} \mathbf{1}_{m}=\boldsymbol{a}, \boldsymbol{P}^{T} \mathbf{1}_{n}=\boldsymbol{b}\right\}$
Def. Optimal Transport Problem

$$
W_{p}^{p}(\boldsymbol{\mu}, \boldsymbol{\nu})=\min _{P \in U(a, b)}\left\langle\boldsymbol{P}, M_{X \boldsymbol{Y}}\right\rangle
$$

Dual Kantorovich Problem

$$
\overline{W_{p}^{p}(\boldsymbol{\mu}, \boldsymbol{\nu})=\min _{\substack{\boldsymbol{P} \in \mathbb{R}_{+}^{n \times m} \\ \boldsymbol{P} \mathbf{1}_{m}=\boldsymbol{a}, \boldsymbol{P}^{T} \mathbf{1}_{n}=\boldsymbol{b}}}\left\langle\boldsymbol{P}, M_{\boldsymbol{X} \boldsymbol{Y}}\right\rangle}
$$

Dual Kantorovich Problem

$$
\overline{W_{p}^{p}(\boldsymbol{\mu}, \boldsymbol{\nu})=} \min _{\substack{P \in \mathbb{R}_{+}^{n \times m} \\ \boldsymbol{P 1}_{m}=a, \boldsymbol{P}^{T} \mathbf{1}_{n}=\boldsymbol{b}}}\left\langle\boldsymbol{P}, M_{\boldsymbol{X} \boldsymbol{Y}}\right\rangle
$$

Def. Dual OT problem

$$
W_{p}^{p}(\mu, \boldsymbol{\nu})=\max _{\substack{\alpha \in \mathbb{R}^{n}, \boldsymbol{\beta} \in \mathbb{R}^{m} \\ \alpha_{i}+\boldsymbol{\beta}_{j} \leq D\left(x_{i}, \boldsymbol{y}_{j}\right)^{p}}} \alpha^{T} \boldsymbol{a}+\beta^{T} \boldsymbol{b}
$$

Dual Kantorovich Problem

$$
\begin{aligned}
& W_{p}^{p}(\boldsymbol{\mu}, \boldsymbol{\nu})= \\
& \text { min } \\
& \boldsymbol{P} \in \mathbb{R}_{+}^{n \times m} \\
& \boldsymbol{P} \mathbf{1}_{m}=\boldsymbol{a}, \boldsymbol{P}^{T} \mathbf{1}_{n}=\boldsymbol{b}
\end{aligned}
$$

Def. Dual OT problem

$$
W_{p}^{p}(\boldsymbol{\mu}, \boldsymbol{\nu})=\max _{\substack{\alpha \in \mathbb{R}^{n}, \boldsymbol{\beta} \in \mathbb{R}^{m} \\ \alpha_{i}+\boldsymbol{\beta}_{j} \leq D\left(x_{i}, \boldsymbol{y}_{j}\right)^{p}}} \alpha^{T} \boldsymbol{a}+\beta^{T} \boldsymbol{b}
$$

Dual Kantorovich Problem

$$
\overline{W_{p}^{p}(\boldsymbol{\mu}, \boldsymbol{\nu})=} \min _{\substack{\boldsymbol{P} \in \mathbb{R}_{+}^{n \times m} \\ \boldsymbol{P 1}_{m}=a, \boldsymbol{P}^{T} \mathbf{1}_{n}=\boldsymbol{b}}}\left\langle\boldsymbol{P}, M_{\boldsymbol{X} \boldsymbol{Y}}\right\rangle
$$

Def. Dual OT problem

$$
W_{p}^{p}(\boldsymbol{\mu}, \boldsymbol{\nu})=\max _{\substack{\alpha \in \mathbb{R}^{n}, \boldsymbol{\beta} \in \mathbb{R}^{m} \\ \alpha_{i}+\boldsymbol{\beta}_{\boldsymbol{j}} \leq D\left(x_{i}, \boldsymbol{y}_{\boldsymbol{j}}\right)^{p}}} \alpha^{T} \boldsymbol{a}+\beta^{T} \boldsymbol{b}
$$

Solving the OT Problem

$M_{X Y}$

$U(\boldsymbol{a}, \boldsymbol{b})$

Solving the OT Problem

Solving the OT Problem

min cost flow solver used in practice. $O\left(n^{3} \log (n)\right)$
 \section*{$U(\boldsymbol{a}, \boldsymbol{b})$

 }

Solution P^{\star} unstable and not always unique.

Solving the OT Problem

Discrete OT Problem


```
    i*
        enti,c
    Last update: 3/14/98
    An implementation of the Earth Movers Distance.
    Based of the solution for the Transportation probler as described in
    "Introduction to Mathematical. Programming" by F. S. Hillier and
    G. J. Lieverman, McGraw-Hill, 1990
    Copyright (C) 1498 Ycss1 Ruther
    Computer Srience Department, Stanford University
    E-Mall: rdoneracs.starford.edu URL: atto://visicn.stantord,edu/~ramner
    *i
    /A#include sstdio.h;
    #include <stdlio.hio*/
    #inciude emat?. ox
    Ainctude "emd.)"
    fdefine DEBUG_LEVEL O
    /*
        0 = N0 ME55AGES
        = PRINT THE NUMBER CF ITERATIONS AND THE FINAL RESLLL
        = PRINT THE RESULT AFTER EVER ITERATION
        = PRINT ALSO THE FLOW AFTER EYERY ITERATION
        < - PRINT A LOT OF INFCRNATION (PRODAJLY JSEFUL OFLY FOR THE AUTHOR)
    4i
    fdefine MAX_SIG_SIZE1 (NAX_SIG_SIZE+1) /* FOR THE FCSIBLE DUMMY FEATJRE */
    /* NEW TYPES DEFINITION */
    /* nodel_t IS USED FUR SINELE-LINKED LISIS */
    typede* struct nodel_t {
        int 1;
    duuble val;
    slrucl nud=1 l *Nexl;
    } node1_t;
/* node1_t IS JSED FOR DCLELE-LINKED LISTS **
    typedet struct oode2 t {
    int i, j;
    doubie val;
    struct node2_t *NextC:
    struct noda>-t *NextR; /* N-XI RIW */
) nafe%_t:
i* GLOBAL VARIABLE DECLARATION */
stotic int _o1, _n2;
stotic <looz_C[MAX_SIG_SIZE1][MAX_SIG_SIZE1];/* THE CCST MATRIX */
stotic node2_\overline{t}}\times[[MAX_SIC_SIZE1*2] - /* THE EASIC VARIABLES VECTOR */
```


Discrete OT Problem

```
| | |ernd.c.6.1 ; <NO selec.eci symbul>
    enld, C
    Last update: 3/14/98
    An implementation of the Earth Movers Distance
    Based of toe solution for the ransportation protlem as described in
    "Introduction to Mathematical. Programming" by F. S. Hillier and
    G. J. Lieverman, McGraw-Hill, 1990
    Copyright (C) 1498 Ycss1 Ruther
    Computer Srience Department, Stanford University
    E-Mall: rdoneracs.starford.edu URL: atto://visicn.stantord,edu/~ramner
*i
iA#include cstdio.h;
Ainclude cstdlio.h:e+
#inciude <mat?. ox
Ainctude "emd.)"
fdefine DEBUG_LEVEL O
/*
    --\10 M
    = NO MESSAGES
        = PRINT THE NUMBER CF ITERA -ONS ANS THE FINAL RESLLT
        = PRINT THE RESULT AFTER EVER ITERATION
        = PRINT ALSO THE FLCW AFTER EVERY ITERATION
    < - PRINT A LOT OF INFCRNATION (PRODAJLY USEFUL OHNY FOR THE AUTH0R)
4i
#define MAX_SIG_SIZE1 (NAX_SIG_SIZE+1) /* FOR THE FCSIBLE DUMMY FEATJRE */
i* NEN TYPES DEFINITION */
f* nodel_t IS USED FOR SIN(IE-LINKFD LISIS */
typede* szruct nodel_t {
    1nt 1;
    duuble val;
    slruct noú=1 L *Vexl;
    } node1_t;
/* node1_t IS JSED FOR DCLELE-LINKED LISTS */
    typedet struct oode2 t {
    int i, j;
    doubie val;
    /* NEXT COLUMN *
    struct noma> *NPxtR; /* N+XI RITW */
) nafe%_t:
i* GLOBAL VARIABLE DECLARATION */
stotic int _o1, _n2; /* SIGNATLRES SIZES +
stotic =loo₹ _C[MAX_SIG_SIZE1][MAX_SIG_SIZE1];/** THE CCST MATRIX */
stotic node2_\overline{t}_\times[MAX_SIC_SIZE1*2] - /* THE EASIC VARIABLES VECTOR */
```

c emd.c

Discrete OT Problem

```
| | |ernd.c.6.1 ; <NO selec.eci symbul>
    enld, C
    Last update: 3/14/98
    An implementation of the Earth Movers Distance
    Based of toe solution for the ransportation protlem as described in
    "Introduction to Mathematical. Programming" by F. S. Hillier and
    G. J. Lieverman, McGraw-Hill, 1990
    Copyright (C) 1498 Ycss1 Ruther
    Computer Srience Department, Stanford University
    E-Mall: rdoneracs.starford.edu URL: atto://visicn.stantord,edu/~ramner
*i
iA#include cstdio.h;
Ainclude cstdlio.h:e+
#inciude <mat?. ox
Ainctude "emd.)"
fdefine DEBUG_LEVEL O
/*
    --\10 M
    = NO MESSAGES
        = PRINT THE NUMBER CF ITERA -ONS ANS THE FINAL RESLLT
        = PRINT THE RESULT AFTER EVER ITERATION
        = PRINT ALSO THE FLCW AFTER EVERY ITERATION
    < - PRINT A LOT OF INFCRNATION (PRODAJLY USEFUL OHNY FOR THE AUTH0R)
4i
#define MAX_SIG_SIZE1 (NAX_SIG_SIZE+1) /* FOR THE FCSIBLE DUMMY FEATJRE */
i* NEN TYPES DEFINITION */
f* nodel_t IS USED FOR SIN(IE-LINKFD LISIS */
typede* szruct nodel_t {
    1nt 1;
    duuble val;
    slruct noú=1 L *Vexl;
    } node1_t;
/* node1_t IS JSED FOR DCLELE-LINKED LISTS */
    typedet struct oode2 t {
    int i, j;
    doubie val;
    /* NEXT COLUMN *
    struct noma> *NPxtR; /* N+XI RITW */
) nafe%_t:
i* GLOBAL VARIABLE DECLARATION */
stotic int _o1, _n2; /* SIGNATLRES SIZES +
stotic =loo₹ _C[MAX_SIG_SIZE1][MAX_SIG_SIZE1];/** THE CCST MATRIX */
stotic node2_\overline{t}_\times[MAX_SIC_SIZE1*2] - /* THE EASIC VARIABLES VECTOR */
```

c emd.c

Solution: Regularization

$M_{X Y}$
 $U(\boldsymbol{a}, \boldsymbol{b})$
 Wishlist:
 faster \& scalable, more stable, differentiable

Entropic Regularization [Wilson'62]

Def. Regularized Wasserstein, $\gamma \geq 0$

$$
W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text { def }}{=} \min _{P \in U(a, b)}\left\langle\boldsymbol{P}, M_{X \boldsymbol{Y}}\right\rangle-\gamma E(\boldsymbol{P})
$$

$$
E(P) \stackrel{\text { def }}{=}-\sum_{i, j=1}^{n m} P_{i j}\left(\log P_{i j}-1\right)
$$

Note: Unique optimal solution because of strong concavity of entropy

Entropic Regularization [Wilson'62]

Def. Regularized Wasserstein, $\gamma \geq 0$

$$
W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text { def }}{=} \min _{P \in U(a, \boldsymbol{b})}\left\langle\boldsymbol{P}, M_{X \boldsymbol{Y}}\right\rangle-\gamma E(\boldsymbol{P})
$$

Note: Unique optimal solution because of strong concavity of entropy

Entropic Regularization [Wilson'62]

Def. Regularized Wasserstein, $\gamma \geq 0$

$$
W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text { def }}{=} \min _{P \in U(a, \boldsymbol{b})}\left\langle\boldsymbol{P}, M_{X \boldsymbol{Y}}\right\rangle-\gamma E(\boldsymbol{P})
$$

Note: Unique optimal solution because of strong concavity of entropy

Entropic Regularization [Wilson'62]

Def. Regularized Wasserstein, $\gamma \geq 0$

$$
W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text { def }}{=} \min _{P \in U(a, b)}\left\langle\boldsymbol{P}, M_{X \boldsymbol{Y}}\right\rangle-\gamma E(\boldsymbol{P})
$$

$\approx " y=T(x) "$
Note: Unique optimal solution because of strong concavity of entropy

Fast \& Scalable Algorithm

Prop. If $P_{\gamma} \stackrel{\text { def }}{=} \operatorname{argmin}\left\langle\boldsymbol{P}, M_{\boldsymbol{X} \boldsymbol{Y}}\right\rangle-\gamma E(\boldsymbol{P})$

$$
\boldsymbol{P} \in U(a, b)
$$

then $\exists!u \in \mathbb{R}_{+}^{n}, \boldsymbol{v} \in \mathbb{R}_{+}^{m}$, such that
$P_{\gamma}=\operatorname{diag}(u) K \operatorname{diag}(v), K \stackrel{\text { def }}{=} e^{-M_{X Y} / \gamma}$

Fast \& Scalable Algorithm

Prop. If $P_{\gamma} \stackrel{\text { def }}{=} \operatorname{argmin}\left\langle\boldsymbol{P}, M_{\boldsymbol{X} \boldsymbol{Y}}\right\rangle-\gamma E(\boldsymbol{P})$ $P \in U(a, b)$
then $\exists!u \in \mathbb{R}_{+}^{n}, \boldsymbol{v} \in \mathbb{R}_{+}^{m}$, such that
$P_{\gamma}=\operatorname{diag}(u) K \operatorname{diag}(v), K \stackrel{\text { def }}{=} e^{-M_{X Y} / \gamma}$

$$
L(P, \alpha, \beta)=\sum_{i j} P_{i j} M_{i j}+\gamma P_{i j}\left(\log P_{i j}-1\right)+\alpha^{T}(P \mathbf{1}-\boldsymbol{a})+\beta^{T}\left(P^{T} \mathbf{1}-\boldsymbol{b}\right)
$$

$$
\partial L / \partial P_{i j}=M_{i j}+\gamma \log P_{i j}+\alpha_{i}+\beta_{j}
$$

$\left(\partial L / \partial P_{i j}=0\right) \Rightarrow P_{i j}=e^{\frac{\alpha_{i}}{\gamma}} e^{-\frac{M_{i j}}{\gamma}} e^{\frac{\beta_{j}}{\gamma}}=u_{i} K_{i j} v_{j}$

Fast \& Scalable Algorithm

Prop. If $P_{\gamma} \stackrel{\text { def }}{=} \operatorname{argmin}\left\langle\boldsymbol{P}, M_{\boldsymbol{X} \boldsymbol{Y}}\right\rangle-\gamma E(\boldsymbol{P})$ $P \in U(a, b)$
then $\exists!u \in \mathbb{R}_{+}^{n}, \boldsymbol{v} \in \mathbb{R}_{+}^{m}$, such that
$P_{\gamma}=\operatorname{diag}(u) K \operatorname{diag}(v), K \stackrel{\text { def }}{=} e^{-M_{X Y} / \gamma}$

Fast \& Scalable Algorithm

Prop. If $P_{\gamma} \stackrel{\text { def }}{=} \operatorname{argmin}\left\langle\boldsymbol{P}, M_{\boldsymbol{X} \boldsymbol{Y}}\right\rangle-\gamma E(\boldsymbol{P})$ $P \in U(a, b)$
then $\exists!u \in \mathbb{R}_{+}^{n}, \boldsymbol{v} \in \mathbb{R}_{+}^{m}$, such that
$P_{\gamma}=\operatorname{diag}(u) K \operatorname{diag}(v), K \stackrel{\text { def }}{=} e^{-M_{X Y} / \gamma}$

Fast \& Scalable Algorithm

Prop. If $P_{\gamma} \stackrel{\text { def }}{=} \operatorname{argmin}\left\langle\boldsymbol{P}, M_{\boldsymbol{X} \boldsymbol{Y}}\right\rangle-\gamma E(\boldsymbol{P})$

$$
P \in U(a, b)
$$

then $\exists!u \in \mathbb{R}_{+}^{n}, \boldsymbol{v} \in \mathbb{R}_{+}^{m}$, such that
$P_{\gamma}=\operatorname{diag}(u) K \operatorname{diag}(v), \quad K \xlongequal{\text { def }} e^{-M_{X Y} / \gamma}$

Fast \& Scalable Algorithm

Prop. If $P_{\gamma} \stackrel{\text { def }}{=} \operatorname{argmin}\left\langle\boldsymbol{P}, M_{\boldsymbol{X} \boldsymbol{Y}}\right\rangle-\gamma E(\boldsymbol{P})$

$$
P \in U(a, b)
$$

then $\exists!u \in \mathbb{R}_{+}^{n}, \boldsymbol{v} \in \mathbb{R}_{+}^{m}$, such that
$P_{\gamma}=\operatorname{diag}(u) K \operatorname{diag}(v), \quad K \stackrel{\text { def }}{=} e^{-M_{X Y} / \gamma}$

$$
P_{\gamma} \in U(\boldsymbol{a}, \boldsymbol{b}) \Leftrightarrow\left\{\begin{array}{l}
\operatorname{diag}(u) K \boldsymbol{v} \\
\operatorname{diag}(\boldsymbol{v}) K^{T} \boldsymbol{u}
\end{array}\right.
$$

$$
=a
$$

$$
=b
$$

Fast \& Scalable Algorithm

Prop. If $P_{\gamma} \stackrel{\text { def }}{=} \operatorname{argmin}\left\langle\boldsymbol{P}, M_{\boldsymbol{X} \boldsymbol{Y}}\right\rangle-\gamma E(\boldsymbol{P})$

$$
P \in U(a, b)
$$

then $\exists!u \in \mathbb{R}_{+}^{n}, \boldsymbol{v} \in \mathbb{R}_{+}^{m}$, such that
$P_{\gamma}=\operatorname{diag}(u) K \operatorname{diag}(v), K \stackrel{\text { def }}{=} e^{-M_{X Y} / \gamma}$

$$
P_{\gamma} \in U(\boldsymbol{a}, \boldsymbol{b}) \Leftrightarrow \begin{cases}\boldsymbol{u} \odot K \boldsymbol{v} & =\boldsymbol{a} \\ \boldsymbol{v} \odot K^{T} \boldsymbol{u} & =\boldsymbol{b}\end{cases}
$$

Fast \& Scalable Algorithm

Prop. If $P_{\gamma} \stackrel{\text { def }}{=} \operatorname{argmin}\left\langle\boldsymbol{P}, M_{\boldsymbol{X} \boldsymbol{Y}}\right\rangle-\gamma E(\boldsymbol{P})$ $P \in U(a, b)$
then $\exists!u \in \mathbb{R}_{+}^{n}, \boldsymbol{v} \in \mathbb{R}_{+}^{m}$, such that
$P_{\gamma}=\operatorname{diag}(u) K \operatorname{diag}(v), K \stackrel{\text { def }}{=} e^{-M_{X Y} / \gamma}$

$$
P_{\gamma} \in U(\boldsymbol{a}, \boldsymbol{b}) \Leftrightarrow\left\{\begin{array}{l}
\boldsymbol{u}=\boldsymbol{a} / K \boldsymbol{v} \\
\boldsymbol{v}=\boldsymbol{b} / K^{T} \boldsymbol{u}
\end{array}\right.
$$

Fast \& Scalable Algorithm

Sinkhorn's Algorithm : Repeat

$$
\begin{array}{ll}
\text { 1. } & \boldsymbol{u}=\boldsymbol{a} / K \boldsymbol{v} \\
\text { 2. } & \boldsymbol{v}=\boldsymbol{b} / K^{T} \boldsymbol{u}
\end{array}
$$

Fast \& Scalable Algorithm

Sinkhorn's Algorithm : Repeat

$$
\begin{array}{ll}
\text { 1. } & \boldsymbol{u}=\boldsymbol{a} / K \boldsymbol{v} \\
\text { 2. } & \boldsymbol{v}=\boldsymbol{b} / K^{T} \boldsymbol{u}
\end{array}
$$

- [Sinkhorn'64] proved convergence for the first time.
- [Lorenz'89] linear convergence, see [Altschuler'17]
- $O(n m)$ complexity, GPGPU parallel [Cuturi'13] .
- $O(n \log n)$ on gridded spaces using convolutions. [Solomon'15]

Fast \& Scalable Algorithm

- [Sinkhorn'64] fixed-point iterations for (u, v)

$$
\boldsymbol{u} \leftarrow \boldsymbol{a} / K \boldsymbol{v}, \quad \boldsymbol{v} \leftarrow \boldsymbol{b} / K^{T} \boldsymbol{u}
$$

Fast \& Scalable Algorithm

- [Sinkhorn'64] fixed-point iterations for (u, v)

$$
\boldsymbol{u} \leftarrow \boldsymbol{a} / K \boldsymbol{v}, \quad \boldsymbol{v} \leftarrow \boldsymbol{b} / K^{T} \boldsymbol{u}
$$

\boldsymbol{v}_{0}

Fast \& Scalable Algorithm

- [Sinkhorn'64] fixed-point iterations for (u, v)

$$
\boldsymbol{u} \leftarrow \boldsymbol{a} / K \boldsymbol{v}, \quad \boldsymbol{v} \leftarrow \boldsymbol{b} / K^{T} \boldsymbol{u}
$$

\boldsymbol{v}_{0}

$a b$

Fast \& Scalable Algorithm

- [Sinkhorn'64] fixed-point iterations for (u, v)

$$
\boldsymbol{u} \leftarrow \boldsymbol{a} / K \boldsymbol{v}, \quad \boldsymbol{v} \leftarrow \boldsymbol{b} / K^{T} \boldsymbol{u}
$$

\boldsymbol{v}_{0}

Fast \& Scalable Algorithm

- [Sinkhorn'64] fixed-point iterations for (u, v)

$$
\boldsymbol{u} \leftarrow \boldsymbol{a} / K \boldsymbol{v}, \quad \boldsymbol{v} \leftarrow \boldsymbol{b} / K^{T} \boldsymbol{u}
$$

Fast \& Scalable Algorithm

- [Sinkhorn'64] fixed-point iterations for (u, v)

$$
u \leftarrow \boldsymbol{a} / K \boldsymbol{v}, \quad \boldsymbol{v} \leftarrow \boldsymbol{b} / K^{T} \boldsymbol{u}
$$

$a b$

Fast \& Scalable Algorithm

- [Sinkhorn'64] fixed-point iterations for (u, v)

$$
\boldsymbol{u} \leftarrow \boldsymbol{a} / K \boldsymbol{v}, \quad \boldsymbol{v} \leftarrow \boldsymbol{b} / K^{T} \boldsymbol{u}
$$

Fast \& Scalable Algorithm

- [Sinkhorn'64] fixed-point iterations for (u, v)

$$
\boldsymbol{u} \leftarrow \boldsymbol{a} / K \boldsymbol{v}, \quad \boldsymbol{v} \leftarrow \boldsymbol{b} / K^{T} \boldsymbol{u}
$$

Fast \& Scalable Algorithm

- [Sinkhorn'64] fixed-point iterations for (u, v)

$$
\boldsymbol{u} \leftarrow \boldsymbol{a} / K \boldsymbol{v}, \quad \boldsymbol{v} \leftarrow \boldsymbol{b} / K^{T} \boldsymbol{u}
$$

Fast \& Scalable Algorithm

- [Sinkhorn'64] fixed-point iterations for (u, v)

$$
\boldsymbol{u} \leftarrow \boldsymbol{a} / K \boldsymbol{v}, \quad \boldsymbol{v} \leftarrow \boldsymbol{b} / K^{T} \boldsymbol{u}
$$

Fast \& Scalable Algorithm

- [Sinkhorn'64] fixed-point iterations for (u, v)

$$
\boldsymbol{u} \leftarrow \boldsymbol{a} / K \boldsymbol{v}, \quad \boldsymbol{v} \leftarrow \boldsymbol{b} / K^{T} \boldsymbol{u}
$$

Fast \& Scalable Algorithm

- [Sinkhorn'64] fixed-point iterations for (u, v)

$$
\boldsymbol{u} \leftarrow \boldsymbol{a} / K \boldsymbol{v}, \quad \boldsymbol{v} \leftarrow \boldsymbol{b} / K^{T} \boldsymbol{u}
$$

Fast \& Scalable Algorithm

- [Sinkhorn'64] fixed-point iterations for (u, v)

$$
\boldsymbol{u} \leftarrow \boldsymbol{a} / K \boldsymbol{v}, \quad \boldsymbol{v} \leftarrow \boldsymbol{b} / K^{T} \boldsymbol{u}
$$

Fast \& Scalable Algorithm

- [Sinkhorn'64] fixed-point iterations for (u, v)

$$
\boldsymbol{u} \leftarrow \boldsymbol{a} / K \boldsymbol{v}, \quad \boldsymbol{v} \leftarrow \boldsymbol{b} / K^{T} \boldsymbol{u}
$$

Fast \& Scalable Algorithm

- [Sinkhorn'64] fixed-point iterations for (u, v)

$$
u \leftarrow a / K \boldsymbol{v}, \quad \boldsymbol{v} \leftarrow \boldsymbol{b} / K^{T} \boldsymbol{u}
$$

Fast \& Scalable Algorithm

- [Sinkhorn'64] fixed-point iterations.
$a b$
II
K

$\operatorname{diag}\left(u_{L}\right)$
 K

$\operatorname{diag}\left(v_{L}\right)$

Fast \& Scalable Algorithm

- [Sinkhorn'64] fixed-point iterations.

Also embarrassingly parallel

- [Sinkhorn'64] with matrix fixed-point iterations

Also embarrassingly parallel

- [Sinkhorn'64] with matrix fixed-point iterations

Also embarrassingly parallel

- [Sinkhorn'64] with matrix fixed-point iterations

Also embarrassingly parallel

- [Sinkhorn'64] with matrix fixed-point iterations

Also embarrassingly parallel

- [Sinkhorn'64] with matrix fixed-point iterations

Also embarrassingly parallel

- [Sinkhorn'64] with matrix fixed-point iterations

Also embarrassingly parallel

- [Sinkhorn'64] with matrix fixed-point iterations

Also embarrassingly parallel

- [Sinkhorn'64] with matrix fixed-point iterations

Also embarrassingly parallel

- [Sinkhorn'64] with matrix fixed-point iterations

Also embarrassingly parallel

- [Sinkhorn'64] with matrix fixed-point iterations

Very Fast EMD Approx. Solver

Note. (Ω, D) is a random graph with shortest path metric, histograms sampled uniformly on simplex, Sinkhorn tolerance 10^{-2}.

Very Fast EMD Approx. Solver

Very Fast EMD Approx. Solver

Sinkhorn as a Dual Algorithm

Def. Regularized Wasserstein, $\gamma \geq 0$
$W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text { def }}{=} \min _{P \in U(a, b)}\left\langle\boldsymbol{P}, M_{X \boldsymbol{Y}}\right\rangle-\gamma E(\boldsymbol{P})$
REGULARIZED DISCRETE PRIMAL

$$
\begin{array}{r}
W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu})=\max _{\alpha, \boldsymbol{\beta}} \boldsymbol{\alpha}^{T} \boldsymbol{a}+\boldsymbol{\beta}^{T} \boldsymbol{b}-\gamma\left(e^{\boldsymbol{\alpha} / \gamma}\right)^{T} K\left(e^{\boldsymbol{\beta} / \gamma}\right) \\
\text { where } K=\left[e^{-\frac{D^{p}\left(x_{i}, y_{j}\right)}{\gamma}}\right]_{i j}
\end{array}
$$

REGULARIZED DISCRETE DUAL
Sinkhorn $=$ Block Coordinate Ascent on Dual

Block Coordinate Ascent, a.k.a Sinkhorn

$W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu})=\max _{\boldsymbol{\alpha}, \boldsymbol{\beta}} \boldsymbol{\alpha}^{T} \boldsymbol{a}+\boldsymbol{\beta}^{T} \boldsymbol{b}-\gamma\left(e^{\boldsymbol{\alpha} / \gamma}\right)^{T} K\left(e^{\boldsymbol{\beta} / \gamma}\right)$
REGULARIZED DISCRETE DUAL

$$
\mathcal{E}(\boldsymbol{\alpha}, \boldsymbol{\beta})=\boldsymbol{\alpha}^{T} \boldsymbol{a}+\boldsymbol{\beta}^{T} \boldsymbol{b}-\gamma\left(e^{\boldsymbol{\alpha} / \gamma}\right)^{T} K e^{\boldsymbol{\beta} / \gamma}
$$

Block Coordinate Ascent, a.k.a Sinkhorn

$W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu})=\max _{\boldsymbol{\alpha}, \boldsymbol{\beta}} \boldsymbol{\alpha}^{T} \boldsymbol{a}+\boldsymbol{\beta}^{T} \boldsymbol{b}-\gamma\left(e^{\boldsymbol{\alpha} / \gamma}\right)^{T} K\left(e^{\boldsymbol{\beta} / \gamma}\right)$
REGULARIZED DISCRETE DUAL
$\mathcal{E}(\boldsymbol{\alpha}, \boldsymbol{\beta})=\boldsymbol{\alpha}^{T} \boldsymbol{a}+\boldsymbol{\beta}^{T} \boldsymbol{b}-\gamma\left(e^{\boldsymbol{\alpha} / \gamma}\right)^{T} K e^{\boldsymbol{\beta} / \gamma}$
$\nabla_{\alpha} \mathcal{E}=\boldsymbol{a}-e^{\boldsymbol{\alpha} / \gamma} \odot K e^{\boldsymbol{\beta} / \gamma}$
$\nabla_{\boldsymbol{\beta}} \mathcal{E}=\boldsymbol{b}-e^{\boldsymbol{\beta} / \gamma} \odot K^{T} e^{\boldsymbol{\alpha} / \gamma}$

Block Coordinate Ascent, a.k.a Sinkhorn

$W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu})=\max _{\boldsymbol{\alpha}, \boldsymbol{\beta}} \boldsymbol{\alpha}^{T} \boldsymbol{a}+\boldsymbol{\beta}^{T} \boldsymbol{b}-\gamma\left(e^{\boldsymbol{\alpha} / \gamma}\right)^{T} K\left(e^{\boldsymbol{\beta} / \gamma}\right)$
REGULARIZED DISCRETE DUAL
$\mathcal{E}(\boldsymbol{\alpha}, \boldsymbol{\beta})=\boldsymbol{\alpha}^{T} \boldsymbol{a}+\boldsymbol{\beta}^{T} \boldsymbol{b}-\gamma\left(e^{\boldsymbol{\alpha} / \gamma}\right)^{T} K e^{\boldsymbol{\beta} / \gamma}$
$\nabla_{\alpha} \mathcal{E}=a-e^{\boldsymbol{\alpha} / \gamma} \odot K e^{\boldsymbol{\beta} / \gamma}$
$\alpha \leftarrow \gamma\left(\log a-\log K\left(e^{\boldsymbol{\beta} / \gamma}\right)\right)$
$\nabla_{\boldsymbol{\beta}} \mathcal{E}=\boldsymbol{b}-e^{\boldsymbol{\beta} / \gamma} \odot K^{T} e^{\alpha / \gamma}$
$\beta \leftarrow \gamma\left(\log b-\log K^{T}\left(e^{\alpha / \gamma}\right)\right)$

Block Coordinate Ascent, a.k.a Sinkhorn

$W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu})=\max _{\boldsymbol{\alpha}, \boldsymbol{\beta}} \boldsymbol{\alpha}^{T} \boldsymbol{a}+\boldsymbol{\beta}^{T} \boldsymbol{b}-\gamma\left(e^{\boldsymbol{\alpha} / \gamma}\right)^{T} K\left(e^{\boldsymbol{\beta} / \gamma}\right)$
REGULARIZED DISCRETE DUAL

Block Coordinate Ascent, a.k.a Sinkhorn

$W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu})=\max _{\boldsymbol{\alpha}, \boldsymbol{\beta}} \boldsymbol{\alpha}^{T} \boldsymbol{a}+\boldsymbol{\beta}^{T} \boldsymbol{b}-\gamma\left(e^{\boldsymbol{\alpha} / \gamma}\right)^{T} K\left(e^{\boldsymbol{\beta} / \gamma}\right)$
REGULARIZED DISCRETE DUAL

$$
(u, \boldsymbol{v}) \stackrel{\text { def }}{=}\left(e^{\boldsymbol{\alpha} / \gamma}, e^{\boldsymbol{\beta} / \gamma}\right)
$$

$u \leftarrow \frac{a}{K v}$

$$
v \leftarrow \frac{b}{K^{T} u}
$$

Block Coordinate Ascent, a.k.a Sinkhorn

$W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu})=\max _{\boldsymbol{\alpha}, \boldsymbol{\beta}} \boldsymbol{\alpha}^{T} \boldsymbol{a}+\boldsymbol{\beta}^{T} \boldsymbol{b}-\gamma\left(e^{\boldsymbol{\alpha} / \gamma}\right)^{T} K\left(e^{\boldsymbol{\beta} / \gamma}\right)$
REGULARIZED DISCRETE DUAL

$$
(u, \boldsymbol{v}) \stackrel{\text { def }}{=}\left(e^{\boldsymbol{\alpha} / \gamma}, e^{\boldsymbol{\beta} / \gamma}\right)
$$

$$
\alpha \leftarrow \gamma\left(\log \boldsymbol{a}-\log K\left(e^{\boldsymbol{\beta} / \gamma}\right)\right)
$$

$$
u \leftarrow \frac{a}{K v}
$$

$$
\boldsymbol{\beta} \leftarrow \gamma\left(\log \boldsymbol{b}-\log K^{T}\left(e^{\alpha / \gamma}\right)\right)
$$

$$
\boldsymbol{v} \leftarrow \frac{\boldsymbol{b}}{K^{T} \boldsymbol{u}}
$$

Stochastic Formulation

$$
\begin{aligned}
& W_{p}^{p}(\mu, \nu)=\sup _{\varphi, \psi} \int \varphi d \mu+\int \psi d \boldsymbol{\nu}-\iota_{C}(\varphi, \psi) \\
& C=\left\{(\varphi, \psi) \mid \forall x, y, \varphi(x)+\psi(y) \leq D(x, y)^{p}\right\}
\end{aligned}
$$

Stochastic Formulation

$$
\begin{aligned}
& W_{p}^{p}(\boldsymbol{\mu}, \boldsymbol{\nu})=\sup _{\varphi, \boldsymbol{\psi}} \int \varphi d \boldsymbol{\mu}+\int \psi d \boldsymbol{\nu}-\iota_{C}(\varphi, \boldsymbol{\psi}) \\
& C=\left\{(\varphi, \boldsymbol{\psi}) \mid \forall x, y, \varphi(x)+\boldsymbol{\psi}(y) \leq D(x, y)^{p}\right\}
\end{aligned}
$$

Stochastic Formulation

$$
\begin{aligned}
& W_{p}^{p}(\boldsymbol{\mu}, \boldsymbol{\nu})=\sup _{\varphi, \psi} \int \varphi d \boldsymbol{\mu}+\int \psi d \boldsymbol{\nu}-\iota_{C}(\varphi, \psi) \\
& C=\left\{(\varphi, \boldsymbol{\psi}) \mid \forall x, y, \varphi(x)+\boldsymbol{\psi}(y) \leq D(x, y)^{p}\right\}
\end{aligned}
$$

$$
\begin{gathered}
W_{\gamma}(\mu, \nu)=\sup _{\varphi, \psi} \int \varphi d \mu+\int \psi d \nu-\iota_{C}^{\gamma}(\varphi, \boldsymbol{\psi}) \\
\iota_{C}^{\gamma}(\varphi, \psi)=\gamma \iint e^{\left(\varphi \oplus \psi-D^{p}\right) / \gamma} d \mu d \boldsymbol{\nu} \\
\text { REGULARIZED DUAL }
\end{gathered}
$$

Stochastic Formulation

$$
\begin{gathered}
W_{p}^{p}(\mu, \boldsymbol{\nu})=\sup _{\varphi, \boldsymbol{\psi}} \int \varphi d \mu+\int \boldsymbol{\psi} d \boldsymbol{\nu}-\iota_{C}(\varphi, \boldsymbol{\psi}) \\
C=\left\{(\varphi, \boldsymbol{\psi}) \mid \forall x, y, \varphi(x)+\boldsymbol{\psi}(y) \leq \boldsymbol{D}(x, y)^{p}\right\} \\
\text { regularizing dual constraints } \gamma>0
\end{gathered}
$$

$$
\begin{gathered}
\operatorname{V}_{\gamma}^{\gamma}(\mu, \nu)=\sup _{\varphi, \psi} \int \varphi d \mu+\int \psi d \nu-\frac{\gamma}{C}(\varphi, \psi) \\
\iota_{C}^{\gamma}(\varphi, \psi)=\gamma \iint e^{\left(\varphi \oplus \psi-D^{p}\right) / \gamma} d \mu d \nu
\end{gathered}
$$

Smoothed D transforms

$$
W_{p}^{p}(\mu, \nu)=\sup _{\varphi} \int \varphi d \mu+\int \varphi^{D} d \boldsymbol{\nu}
$$

SEMI-DUAL

$$
\gamma>0
$$

$$
\begin{gathered}
W_{\gamma}(\mu, \nu)=\sup _{\varphi} \int \varphi d \mu+\int \varphi^{D, \gamma} d \nu \\
\varphi^{D, \gamma}=-\gamma \log \int e^{\frac{\varphi(x)-D(x, \cdot)^{p}}{\gamma}} d \mu(x)
\end{gathered}
$$

Regularized Semidual Wasserstein

$$
\begin{aligned}
& W_{\gamma}(\mu, \nu)=\sup _{\varphi} \int \varphi d \mu+\int \varphi^{D, \gamma} d \nu . \\
& \varphi^{D, \gamma}=-\gamma \log \int e^{\frac{\varphi(x)--D(x, \cdot)^{p}}{\gamma}} d \mu(x)
\end{aligned}
$$

substituting

$$
\sup _{\varphi} \int_{y}\left[\int_{x} \varphi(x) d \boldsymbol{\mu}(x)-\gamma \log \int_{x} e^{\frac{\varphi(x)-D(x, y)^{p}}{\gamma}} d \mu(x)\right] d \boldsymbol{\nu}(y) .
$$

Stochastic Regularized Semidual

$$
\sup _{\varphi} \int_{y}\left[\int_{x} \varphi(x) d \mu(x)-\gamma \log \int_{x} e^{\frac{\varphi(x)-D(x, y)^{p}}{\gamma}} d \mu(x)\right] d \boldsymbol{\nu}(y)
$$

Stochastic Regularized Semidual

$$
\sup _{\varphi} \int_{y}\left[\int_{x} \varphi(x) d \mu(x)-\gamma \log \int_{x} e^{\frac{\varphi(x)-D(x, y)^{p}}{\gamma}} d \mu(x)\right] d \boldsymbol{\nu}(y)
$$

REGULARIZED SEMI-DUAL

What if μ is a discrete measure?

$$
\mu=\sum_{i=1}^{n} a_{i} \delta_{x_{i}}
$$

$\varphi \in L_{1}(\boldsymbol{\mu})$ is now just a vector $\boldsymbol{\alpha} \in \mathbb{R}^{n}$!

Stochastic Regularized Semidual

$$
\sup _{\varphi} \int_{y}\left[\int_{x} \varphi(x) d \mu(x)-\gamma \log \int_{x} e^{\frac{\varphi(x)-D(x, y)^{p}}{\gamma}} d \mu(x)\right] d \boldsymbol{\nu}(y)
$$

REGULARIZED SEMI-DUAL

What if μ is a discrete measure?

$$
\mu=\sum_{i=1}^{n} a_{i} \delta_{x_{i}}
$$

$\varphi \in L_{1}(\boldsymbol{\mu})$ is now just a vector $\boldsymbol{\alpha} \in \mathbb{R}^{n}$!

$$
\sup _{\alpha \in \mathbb{R}^{n}} \int_{y}\left[\sum_{i=1}^{n} \boldsymbol{\alpha}_{i} \boldsymbol{a}_{\boldsymbol{i}}-\gamma \log \sum_{i=1}^{n} e^{\frac{\alpha_{i}-D\left(x_{i}, \boldsymbol{y}\right)^{p}}{\gamma}} \boldsymbol{a}_{i}\right] d \boldsymbol{\nu}(\boldsymbol{y})
$$

$$
=\sup _{\alpha \in \mathbb{R}^{n}} \mathbb{E}_{\boldsymbol{\nu}}[f(\boldsymbol{\alpha}, \boldsymbol{y})]
$$

Sinkhorn in between W and MMD

$$
\mu=\sum_{i=1}^{n} a_{i} \delta_{x_{i}} \quad \nu=\sum_{j=1}^{m} b_{j} \delta_{y_{j}}
$$

$$
W^{p}(\boldsymbol{\mu}, \boldsymbol{\nu})=\left\langle\boldsymbol{P}^{\star}, M_{X \boldsymbol{Y}}\right\rangle
$$

$M_{X Y} \quad P^{\star}$

Sinkhorn in between W and $M M D$

Sinkhorn in between W and $M M D$

$$
\begin{gathered}
\mu=\sum_{i=1}^{n} a_{i} \delta_{x_{i}} \quad \nu=\sum_{j=1}^{m} b_{j} \delta_{y_{j}} \\
\mathcal{E}(\boldsymbol{\mu}, \boldsymbol{\nu})=\left\langle\boldsymbol{a} \boldsymbol{b}^{T}, M_{\boldsymbol{X} \boldsymbol{Y}}\right\rangle \\
W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu})=\left\langle P_{\gamma}, M_{X \boldsymbol{Y}}\right\rangle \\
W^{p}(\boldsymbol{\mu}, \boldsymbol{\nu})=\left\langle\boldsymbol{P}^{\star}, M_{X \boldsymbol{Y}}\right\rangle
\end{gathered}
$$

Sinkhorn in between W and MMD

$$
\begin{gathered}
\mu=\sum_{i=1}^{n} a_{i} \delta_{x_{i}} \quad \nu=\sum_{j=1}^{m} b_{j} \delta_{y_{j}} \\
\mathcal{E}(\boldsymbol{\mu}, \boldsymbol{\nu})=\left\langle\boldsymbol{a} \boldsymbol{b}^{T}, M_{\boldsymbol{X} \boldsymbol{Y}}\right\rangle \\
W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu})=\left\langle P_{\gamma}, M_{X \boldsymbol{Y}}\right\rangle \\
W^{p}(\boldsymbol{\mu}, \boldsymbol{\nu})=\left\langle\boldsymbol{P}^{\star}, M_{X \boldsymbol{Y}}\right\rangle
\end{gathered}
$$

Sinkhorn in between W and MMD

$$
\begin{gathered}
\mathcal{E}(\boldsymbol{\mu}, \boldsymbol{\nu})=\left\langle\boldsymbol{a} \boldsymbol{b}^{T}, M_{\boldsymbol{X} \boldsymbol{Y}}\right\rangle \\
\mathcal{M M D}(\boldsymbol{\mu}, \boldsymbol{\nu})=\mathcal{E}(\boldsymbol{\mu}, \boldsymbol{\nu})-\frac{1}{2}(\mathcal{E}(\boldsymbol{\mu}, \boldsymbol{\mu})+\mathcal{E}(\boldsymbol{\nu}, \boldsymbol{\nu})) \\
W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu})=\left\langle P_{\gamma}, M_{\boldsymbol{X} \boldsymbol{Y}}\right\rangle \\
\bar{W}_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu})=W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu})-\frac{1}{2}\left(W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\mu})+W_{\gamma}(\boldsymbol{\nu}, \boldsymbol{\nu})\right) \\
W^{p}(\boldsymbol{\mu}, \boldsymbol{\nu})=\left\langle\boldsymbol{P}^{\star}, M_{\boldsymbol{X} \boldsymbol{Y}}\right\rangle
\end{gathered}
$$

Sinkhorn in between W and $M M D$

$$
\begin{gathered}
\mathcal{M M D}(\mu, \boldsymbol{\nu})=\mathcal{E}(\mu, \boldsymbol{\nu})-\frac{1}{2}(\mathcal{E}(\boldsymbol{\mu}, \boldsymbol{\mu})+\mathcal{E}(\boldsymbol{\nu}, \boldsymbol{\nu})) \\
\gamma \rightarrow \infty \uparrow \\
\bar{W}_{\gamma}(\mu, \boldsymbol{\nu})=W_{\gamma}(\mu, \boldsymbol{\nu})-\frac{1}{2}\left(W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\mu})+W_{\gamma}(\boldsymbol{\nu}, \boldsymbol{\nu})\right) \\
\gamma \rightarrow 0 \\
W^{p}(\boldsymbol{\mu}, \boldsymbol{\nu})=\left\langle\boldsymbol{P}^{\star}, M_{X \boldsymbol{Y}}\right\rangle
\end{gathered}
$$

How to compare them?

i.i.d samples $x_{1}, \ldots, x_{n} \sim \mu, y_{1}, \ldots, \boldsymbol{y}_{\boldsymbol{m}} \sim \nu$,

$$
\hat{\boldsymbol{\mu}}_{\boldsymbol{n}} \stackrel{\text { def }}{=} \frac{1}{n} \sum_{i} \delta_{\boldsymbol{x}_{i}}, \hat{\boldsymbol{\nu}}_{\boldsymbol{m}} \stackrel{\text { def }}{=} \frac{1}{m} \sum_{j} \delta_{\boldsymbol{y}_{j}}
$$

Computational properties

Effort to compute/approximate $\Delta\left(\hat{\mu}_{n}, \hat{\nu}_{m}\right)$?

Statistical properties

$$
\left|\Delta(\mu, \nu)-\Delta\left(\hat{\mu}_{\boldsymbol{n}}, \hat{\boldsymbol{\nu}}_{\boldsymbol{n}}\right)\right| \leq f(n) ?
$$

Sinkhorn in between W and $M M D$

$\mathcal{M M D}(\mu, \nu)=\mathcal{E}(\mu, \nu)-\frac{1}{2}(\mathcal{E}(\mu, \mu)+\mathcal{E}(\nu, \nu))$

$(n+m)^{2}$

$O(1 / \sqrt{n})$

[see Arthur]

$$
W^{p}(\boldsymbol{\mu}, \boldsymbol{\nu})=\left\langle\boldsymbol{P}^{\star}, M_{\boldsymbol{X} \boldsymbol{Y}}\right\rangle
$$

$O((n+m) n m \log (n+m)$
$O\left(1 / n^{1 / d}\right)$

Sinkhorn in between W and $M M D$

$$
\begin{array}{rl}
\mathcal{M} \mathcal{M D}(\boldsymbol{\mu}, \boldsymbol{\nu}) & =\mathcal{E}(\boldsymbol{\mu}, \boldsymbol{\nu})-\frac{1}{2}(\mathcal{E}(\boldsymbol{\mu}, \boldsymbol{\mu})+\mathcal{E}(\boldsymbol{\nu}, \boldsymbol{\nu})) \\
(n+m)^{2} & O(1 / \sqrt{n}) \text { ssee Arthur] }
\end{array}
$$

$\bar{W}_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu})=W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu})-\frac{1}{2}\left(W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\mu})+W_{\gamma}(\boldsymbol{\nu}, \boldsymbol{\nu})\right)$

$$
O\left((n+m)^{2}\right)
$$

$O\left(\frac{1}{\gamma^{d / 2} \sqrt{n}}\right)$
[GCBCP'18]
[FSVATP'18]

$$
W^{p}(\boldsymbol{\mu}, \boldsymbol{\nu})=\left\langle\boldsymbol{P}^{\star}, M_{\boldsymbol{X} \boldsymbol{Y}}\right\rangle
$$

$O((n+m) n m \log (n+m)$

$O\left(1 / n^{1 / d}\right)$

Differentiability of W

$W((a, \boldsymbol{X}),(b, \boldsymbol{Y}))$

Differentiability of W

$W((a+\Delta a, \boldsymbol{X}),(b, \boldsymbol{Y}))=W((a, \boldsymbol{X}),(b, \boldsymbol{Y}))+? ?$

Differentiability of W

$W((a+\Delta a, \boldsymbol{X}),(b, \boldsymbol{Y}))=W((a, \boldsymbol{X}),(b, \boldsymbol{Y}))+? ?$

Sinkhorn \rightarrow Differentiability

$W((a, \boldsymbol{X}+\Delta \boldsymbol{X}),(b, \boldsymbol{Y}))=W((a, \boldsymbol{X}),(b, \boldsymbol{Y}))+? ?$

Sinkhorn \rightarrow Differentiability

$W((a, \boldsymbol{X}+\Delta \boldsymbol{X}),(b, \boldsymbol{Y}))=W((a, \boldsymbol{X}),(b, \boldsymbol{Y}))+? ?$

How to decrease W ? change weights

$$
W_{p}^{p}(\boldsymbol{\mu}, \boldsymbol{\nu})=\max _{\substack{\alpha \in \mathbb{R}^{n}, \boldsymbol{\beta} \in \mathbb{R}^{m} \\ \alpha \oplus \boldsymbol{\beta} \leq M_{X Y}}} \boldsymbol{\alpha}^{T} \boldsymbol{a}+\boldsymbol{\beta}^{T} \boldsymbol{b}
$$

DUAL
Prop. $W(\mu, \nu)$ is convex w.r.t. a,

$$
\partial_{a} W=\arg _{\boldsymbol{\alpha}} \max _{\alpha \oplus \boldsymbol{\beta} \leq M_{\mathbf{Y}}} \boldsymbol{\alpha}^{T} \boldsymbol{a}+\boldsymbol{\beta}^{T} \boldsymbol{b}
$$

Prop. $\quad W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu})$ is convex and differenttiable w.r.t. $a, \nabla_{a} W_{\gamma}=\alpha_{\gamma}^{\star}=\gamma \log u$

How to decrease W ? change locations

$W_{2}^{2}(\mu, \boldsymbol{\nu})=\min _{P \in \mathbb{R}_{+}^{n \times m}}\left\langle\boldsymbol{P}, \mathbf{1}_{n} \mathbf{1}_{d}^{T} \boldsymbol{X}^{2}+\boldsymbol{Y}^{2 T} \mathbf{1}_{d} \mathbf{1}_{m}-2 \boldsymbol{X}^{T} \boldsymbol{Y}\right\rangle$

$$
P \mathbf{1}_{m}=a, P^{\top} \mathbf{1}_{n}=b
$$

PRIMAL
Prop. $p=2, \Omega=\mathbb{R}^{d} . W(\boldsymbol{\mu}, \boldsymbol{\nu})$ decreases if

$$
\boldsymbol{X} \leftarrow \boldsymbol{Y} P^{\star T} \mathbf{D}\left(a^{-1}\right)
$$

Prop. $p=2, \Omega=\mathbb{R}^{d} . W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu})$ is differenttable w.r.t. X, with

$$
\nabla_{X} W_{\gamma}=\boldsymbol{X}-\boldsymbol{Y} P_{\gamma}^{T} \mathbf{D}\left(a^{-1}\right)
$$

Sinkhorn: A Programmer View

Def. For $L \geq 1$, define

$$
W_{L}(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text { def }}{=}\left\langle\boldsymbol{P}_{L}, M_{X \boldsymbol{Y}}\right\rangle,
$$

where $P_{L} \stackrel{\text { def }}{=} \operatorname{diag}\left(u_{L}\right) K \operatorname{diag}\left(v_{L}\right)$,

$$
v_{0}=\mathbf{1}_{m} ; l \geq 0, u_{l} \stackrel{\text { def }}{=} a / K v_{l}, v_{l+1} \stackrel{\text { def }}{=} b / K^{T} u_{l} .
$$

Prop. $\frac{\partial W_{L}}{\partial X}, \frac{\partial W_{L}}{\partial a}$ can be computed recursively, in $O(L)$ kernel $K \times$ vector products.

Sinkhorn: A Programmer View

Def. For $L \geq 1$, define

$$
W_{L}(\mu, \boldsymbol{\nu}) \stackrel{\text { def }}{=}\left\langle\boldsymbol{P}_{L}, M_{X Y}\right\rangle,
$$

Sinkhorn $\ell=1, \ldots, L-1$

Sinkhorn: A Programmer View

Def. For $L \geq 1$, define

$$
W_{L}(\mu, \boldsymbol{\nu}) \stackrel{\text { def }}{\xlongequal{2}}\left\langle P_{L}, M_{X Y}\right\rangle,
$$

Prop. $\frac{\partial W_{L}}{\partial X}, \frac{\partial W_{L}}{\partial a}$ can be computed recursively, in $O(L)$ kernel $K \times$ vector products.
[Hashimoto'16] [Bonneel'16]|Shalit'16]

3. Applications

- Wasserstein distances for retrieval
- Wasserstein barycenters
- W for unsupervised learning
- W inverse problems
- W to learn parameters and generative models

The Earth Mover's Distance

The Earth Mover's Distance

The Earth Mover's Distance

[Rubner'98]

$\operatorname{dist}\left(I_{1}, I_{2}\right)=W_{1}(\boldsymbol{\mu}, \boldsymbol{\nu})$

The Word Mover's Distance

[Kusner'15]
 $\operatorname{dist}\left(D_{1}, D_{2}\right)=W_{2}(\boldsymbol{\mu}, \boldsymbol{\nu})$

Recall

Up to 2010: OT solvers
 $W_{p}(\boldsymbol{\mu}, \boldsymbol{\nu})=?$

Goal now: use OT as a loss or fidelity term

$\operatorname{argmin} F\left(W_{p}\left(\boldsymbol{\mu}, \boldsymbol{\nu}_{\mathbf{1}}\right), W_{p}\left(\boldsymbol{\mu}, \boldsymbol{\nu}_{\mathbf{2}}\right), \ldots, \boldsymbol{\mu}\right)=$? $\mu \in \mathcal{P}(\Omega)$

$$
\nabla_{\mu} W_{p}\left(\mu, \nu_{1}\right)=?
$$

Wassersteinization

[wos-ur-stahyn-ahy-sey-sh $u h-n$] noun.

Introduction of optimal transport into an optimization or learning problem.
cf. least-squarification, L_{i} ification, deep-netification, kernelization

"Wasserstein + Data" Problems

- Quantization, k-means problem [Lloyd'82]

$$
\min _{\substack{\mu \in \mathcal{P}\left(\mathbb{R}^{d}\right) \\|\operatorname{supp} \mu|=k}} W_{2}^{2}\left(\boldsymbol{\mu}, \boldsymbol{\nu}_{\text {data }}\right)
$$

- [McCann'95] Interpolant

$$
\min _{\boldsymbol{\mu} \in \mathcal{P}(\Omega)}(1-t) W_{2}^{2}\left(\boldsymbol{\mu}, \boldsymbol{\nu}_{1}\right)+t W_{2}^{2}\left(\boldsymbol{\mu}, \boldsymbol{\nu}_{\mathbf{2}}\right)
$$

- [JKO'98] PDE's as gradient flows in $(\mathcal{P}(\Omega), W)$.

$$
\mu_{t+1}=\underset{\mu \in \mathcal{P}(\Omega)}{\operatorname{argmin}} J(\mu)+\lambda_{t} W_{p}^{p}\left(\boldsymbol{\mu}, \mu_{t}\right)
$$

Averaging Measures

L_{2} average

W average

Barycenter for Measures?

Barycenter for Measures?

$$
\min _{\boldsymbol{\mu} \in \mathcal{P}(\Omega)} \sum_{i=1}^{N} \lambda_{i} W_{p}^{p}\left(\boldsymbol{\mu}, \boldsymbol{\nu}_{\boldsymbol{i}}\right)
$$

Barycenter for Measures?

$$
\lambda \in \Sigma_{3}
$$

Wasserstein mean
L_{2} mean

Barycenter for Measures?

$$
\lambda \in \Sigma_{3}
$$

Wasserstein mean
L_{2} mean

Multimarginal Formulation

- Exact solution (W_{2}) using MM-OT. [Agueh'11]

Multimarginal Formulation

- Exact solution (W_{2}) using MM-OT. [Agueh'11]

If $\left|\operatorname{supp} \boldsymbol{\nu}_{\boldsymbol{i}}\right|=\boldsymbol{n}_{\boldsymbol{i}}$, LP of size $\left(\prod_{i} \boldsymbol{n}_{\boldsymbol{i}}, \sum_{i} \boldsymbol{n}_{\boldsymbol{i}}\right)$

Averaging Histograms is a LP

When Ω is a finite metric space defined by M.

$$
\min _{a \in \Sigma_{n}} \sum_{i} \lambda_{i} W_{M}\left(\boldsymbol{a}, \boldsymbol{b}_{\boldsymbol{i}}\right)
$$

Averaging Histograms is a LP

When Ω is a finite metric space defined by M.

$$
\begin{aligned}
\min _{\boldsymbol{P}_{1}, \cdots, \boldsymbol{P}_{N}, a} & \sum_{i=1}^{N} \lambda_{i}\left\langle\boldsymbol{P}_{i}, M\right\rangle \\
\text { s.t. } & \boldsymbol{P}_{i}^{T} \mathbf{1}_{n}=\boldsymbol{b}_{\boldsymbol{i}}, \forall i \leq N, \\
& \boldsymbol{P}_{\mathbf{1}} \mathbf{1}_{n}=\cdots=\boldsymbol{P}_{\boldsymbol{N}} \mathbf{1}_{d}=\boldsymbol{a} .
\end{aligned}
$$

$$
\text { If }|\Omega|=n, \text { LP of size }\left(N n^{2},(2 N-1) n\right)
$$

Primal Descent on Regularized W

[Cuturi'14]

Primal Descent on Regularized W

$$
\min _{a \in \Sigma_{h \times h}} \sum_{i=1}^{N} \lambda_{i} W_{\gamma}\left(\boldsymbol{a}, \boldsymbol{b}_{\boldsymbol{i}}\right)
$$

[Cuturi'14]

Primal Descent on Regularized W

$$
\min _{a \in \Sigma_{h \times h}} \sum_{i=1}^{N} \lambda_{i} W_{\gamma}\left(\boldsymbol{a}, \boldsymbol{b}_{\boldsymbol{i}}\right)
$$

[Cuturi'14]

On Regularizing or Not

On Regularizing or Not

On Regularizing or Not

[Schmitzer'16]

On Regularizing or Not

Duality: Regularized Barycenters

$$
\min _{\boldsymbol{\mu} \in \mathcal{P}(\Omega)} \sum_{i=1}^{N} W_{\gamma}\left(\boldsymbol{\mu}, \boldsymbol{\nu}_{\boldsymbol{i}}\right)+\lambda \mathrm{TV}(\boldsymbol{\mu})
$$

Sample 1 Sample 2 Sample 3

Sample 1 Sample 2 Sample 3 Mean

A Smoothed Dual Approach for Variational Wasserstein Problems SIAM Imaging Sciences, 2016

Duality: TV Gradient Flow

$$
\boldsymbol{\mu}_{\boldsymbol{k}+\boldsymbol{1}}=\underset{\mu \in \mathcal{P}(\Omega)}{\operatorname{argmin}} W_{\gamma}\left(\boldsymbol{\mu}, \boldsymbol{\mu}_{\boldsymbol{k}}\right)+\tau \mathrm{TV}(\boldsymbol{\mu})
$$

$t=0$
$t=20$
$t=40$
$t=60$
$t=80$
$t=100$ $t=k \tau$

A Smoothed Dual Approach for Variational Wasserstein Problems
[CP'16] SIAM Imaging Sciences, 2016

Regularized OT as KL Projection

$$
\begin{aligned}
& \hline \mathbf{K L}(P \mid K)=\sum_{i j} P_{i j} \log \left(P_{i j} / K_{i j}\right) \\
& \left\langle P, M_{X \boldsymbol{Y}}\right\rangle-\gamma E(P)=\gamma \mathbf{K} \mathbf{L}(P \mid K)
\end{aligned}
$$

$$
\begin{gathered}
\text { Prop. } P_{\gamma}=\operatorname{Proj}_{C_{a} \cap C_{b}^{\prime}}(K) \\
C_{a}=\left\{P \mid P \mathbf{1}_{m}=a\right\}, C_{b}^{\prime}=\left\{P \mid P^{T} \mathbf{1}_{n}=b\right\}
\end{gathered}
$$

Regularized OT as KL Projection

$$
\begin{gathered}
\text { Prop. } P_{\gamma}=\operatorname{Proj}_{C_{a} \cap C_{b}^{\prime}}(K) \\
C_{a}=\left\{P \mid P \mathbf{1}_{m}=a\right\}, C_{b}^{\prime}=\left\{P \mid P^{T} \mathbf{1}_{n}=\boldsymbol{b}\right\}
\end{gathered}
$$

$$
\begin{aligned}
& \operatorname{Proj}_{C_{a}}(P)=\mathbf{D}\left(\frac{a}{P \mathbf{1}_{m}}\right) P, \\
& \operatorname{Proj}_{C_{b}^{\prime}}(P)=P \mathbf{D}\left(\frac{b}{P^{T} \mathbf{1}_{n}}\right) .
\end{aligned}
$$

1. Sinkhorn $=$ Dykstra's alternate projection
2. Only need to store \& update diagonal multipliers

Wasserstein Barycenter = KL Projections

$$
\left\langle P, M_{X \boldsymbol{Y}}\right\rangle-\gamma E(P)=\gamma \mathbf{K} \mathbf{L}(P \mid K)
$$

$$
\begin{gathered}
\min _{a} \sum_{i=1}^{N} \lambda_{i} W_{\gamma}\left(a, \boldsymbol{b}_{i}\right)=\min _{\substack{\mathrm{P}=\left[P_{1}, \ldots, P_{N}\right] \\
\mathbf{P} \in C_{i} \cap C_{2}}} \sum_{i=1}^{N} \lambda_{i} \mathbf{K L}\left(P_{i} \mid K\right) \\
C_{1}=\left\{\mathbf{P} \mid \exists a, \forall i, P_{i} \mathbf{1}_{m}=a\right\} \\
C_{2}=\left\{\mathbf{P} \mid \forall i, P_{i}^{T} \mathbf{1}_{n}=\boldsymbol{b}_{i}\right\}
\end{gathered}
$$

Wasserstein Barycenter = KL Projections

$\min _{a} \sum_{i=1}^{N} \lambda_{i} W_{\gamma}\left(\boldsymbol{a}, \boldsymbol{b}_{\boldsymbol{i}}\right)=\min _{\substack{\mathbf{P}=\left[\boldsymbol{P}_{\mathbf{1}}, \ldots, \boldsymbol{P}_{\mathbf{N}}\right] \\ \mathbf{P} \in \boldsymbol{C}_{1} \cap \boldsymbol{C}_{\mathbf{2}}}} \sum_{i=1}^{N} \lambda_{i} \mathbf{K} \mathbf{L}\left(\boldsymbol{P}_{\boldsymbol{i}} \mid K\right)$

$$
\begin{aligned}
& \boldsymbol{C}_{\mathbf{1}}=\left\{\mathbf{P} \mid \exists a, \forall i, P_{i} \mathbf{1}_{m}=a\right\} \\
& \boldsymbol{C}_{\mathbf{2}}=\left\{\mathbf{P} \mid \forall i, P_{i}^{T} \mathbf{1}_{n}=\boldsymbol{b}_{\boldsymbol{i}}\right\}
\end{aligned}
$$

[BCCNP'15]
$[K \cdots K]$

Wasserstein Barycenter = KL Projections

$\min _{a} \sum_{i=1}^{N} \lambda_{i} W_{\gamma}\left(\boldsymbol{a}, \boldsymbol{b}_{\boldsymbol{i}}\right)=\min _{\substack{\mathbf{P}=\left[\boldsymbol{P}_{1}, \ldots, \boldsymbol{P}_{N}\right] \\ \mathbf{P} \in \boldsymbol{C}_{\mathbf{1}} \cap \boldsymbol{C}_{\mathbf{2}}}} \sum_{i=1}^{N} \lambda_{i} \mathbf{K} \mathbf{L}\left(\boldsymbol{P}_{\boldsymbol{i}} \mid K\right)$

$$
\begin{aligned}
& C_{\mathbf{1}}=\left\{\mathbf{P} \mid \exists a, \forall i, P_{i} \mathbf{1}_{m}=a\right\} \\
& \boldsymbol{C}_{\mathbf{2}}=\left\{\mathbf{P} \mid \forall i, P_{i}^{T} \mathbf{1}_{n}=\boldsymbol{b}_{\boldsymbol{i}}\right\}
\end{aligned}
$$

u=ones(size(B)); \% d x N matrix

[BCCNP'15]

 while not converged$$
\begin{aligned}
& v=u . *\left(K^{\prime} *\left(B . /\left(K^{*} u\right)\right)\right) ; \% 2(N d \wedge 2) \text { cost } \\
& u=b s x f u n(@ t i m e s, u, \exp (\log (v) * \text { weights))} . / v ;
\end{aligned}
$$

end
$a=$ mean $(v, 2)$;

Iterative Bregman Projections for Regularized Transportation Problems SIAM J. on Sci. Comp. 2015

Applications in Imaging

[Solomon'15]

Applications in Imaging

[Solomon'15]

Applications: Brain Imaging

Extension to non-normalized data! Applied to MEG and fMRI.
[Gramfort'16]

Wasserstein Propagation

[Solomon'14]

Dictionary Learning

$$
\min _{A \in\left(\Sigma_{n}\right)^{K}, \Lambda \in\left(\Sigma_{K}\right)^{N}} \sum_{i=1}^{N} W\left(\boldsymbol{b}_{i}, \sum_{k=1}^{K} \Lambda_{k}^{i} a_{k}\right)
$$

Dictionary Learning

$$
\min _{A \in\left(\Sigma_{n}\right)^{K}, \Lambda \in\left(\Sigma_{K}\right)^{N}} \sum_{i=1}^{N} W\left(\boldsymbol{b}_{i}, \sum_{k=1}^{K} \Lambda_{k}^{i} a_{k}\right)
$$

Wasserstein NMF

KL NMF

[Sandler'11] [Zen'14] [Rolet'16]

OT Dictionary Learning

- [Hoffman'98] proposed to learn dictionaries (topics) for text, seen as histograms-of-words.

$$
\Omega=\{\text { words }\}, \quad|\Omega| \approx 13,000
$$

- Vector embeddings for words [Mikolov'13] [Pennington'14] defines geometry:

$$
D(\text { public }, \text { car })=\left\|x_{\text {public }}-x_{\text {car }}\right\|^{2}
$$

- Data: 7,034 Reuters, 737 BBC sports news articles

Topic Models

[Rolet'16]

Elliptical Embeddings

Multidimensional Scaling [MDS]

embed a metric space in R^{2}

Elliptical Embeddings

Multidimensional Scaling [MDS]

 embed a metric space in elliptical distributions in $P\left(R^{2}\right), W_{2}$

Elliptical Embeddings

Visualization issue

need to shift to precision matrix to recover intuition

Elliptical Embeddings

Word Embeddings

Compute elliptical distribution representations for Words

Wasserstein PCA

$$
\min _{\mu_{0}, \mu_{1}} \sum_{i=1}^{N} \min _{t} W_{2}^{2}\left(\rho_{\mu_{0} \rightarrow \mu_{1}}^{t}, \nu_{i}\right)
$$

Wasserstein PCA

On Empirical Measures

Wasserstein PCA vs. Euclidean PCA

[Ambrosio'06] Generalized Geodesics

$$
\min _{v_{1}, v_{2} \in L^{2}(\overline{\boldsymbol{\nu}}, \Omega)} \sum_{i=1}^{N} \min _{t \in[0,1]} W_{2}^{2}\left(g_{t}\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right), \boldsymbol{\nu}_{i}\right)+\lambda R\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right), ~\left\{\begin{array}{l}
g_{t}\left(v_{1}, \boldsymbol{v}_{2}\right)=\left(\operatorname{Id}-v_{1}+t\left(v_{1}+v_{2}\right)\right) \# \overline{\boldsymbol{\nu}} \\
\text { subject to }-\boldsymbol{v}_{1} \text { and } \operatorname{Id}+v_{2} \text { are Monge maps from } \overline{\boldsymbol{\nu}}
\end{array}\right.
$$

Generalized Principal Geodesics

4	4	4
4	4	4
9	4	4
4	9	4
4	4	4

For each digit, 1,000 MNIST images
[Seguy'15

Inverse Wasserstein Problems

- consider Barycenter operator:

$$
\boldsymbol{b}(\lambda) \stackrel{\text { def }}{=} \underset{a}{\operatorname{argmin}} \sum_{i=1}^{N} \lambda_{i} W_{\gamma}\left(\boldsymbol{a}, \boldsymbol{b}_{\boldsymbol{i}}\right)
$$

- address now Wasserstein inverse problems:

Given \boldsymbol{a}, find $\operatorname{argmin} \mathcal{E}(\lambda) \stackrel{\text { def }}{=} \operatorname{Loss}(\boldsymbol{a}, \boldsymbol{b}(\lambda))$ $\lambda \in \Sigma_{N}$

Wasserstein Inverse Problems

Barycenters = Fixed Points

Prop. [BCCNP'15] Consider $\boldsymbol{B} \in \Sigma_{d}^{N}$ and let $U_{0}=1_{d \times N}$, and then for $l \geq 0$:

$$
\boldsymbol{b}^{l} \stackrel{\text { def }}{=} \exp \left(\log \left(K^{T} \boldsymbol{U}_{l}\right) \lambda\right) ;\left\{\begin{array}{l}
\boldsymbol{V}_{l+1} \stackrel{\text { def }}{=} \frac{b^{l} \mathbf{1}_{N}^{T}}{K^{T} U_{l}} \\
U_{l+1} \stackrel{\text { def }}{=} \frac{B}{K V_{l+1}}
\end{array}\right.
$$

Using Truncated Barycenters

- instead of using the exact barycenter

$$
\underset{\lambda \in \Sigma_{N}}{\operatorname{argmin}} \mathcal{E}(\lambda) \stackrel{\text { def }}{=} \operatorname{Loss}(\boldsymbol{a}, \boldsymbol{b}(\lambda))
$$

- use instead the L-iterate barycenter

$$
\underset{\lambda \in \Sigma_{N}}{\operatorname{argmin}} \mathcal{E}^{(L)}(\lambda) \stackrel{\text { def }}{=} \operatorname{Loss}\left(\boldsymbol{a}, \boldsymbol{b}^{(L)}(\lambda)\right)
$$

- Differente using the chain rule.
$\nabla \mathcal{E}^{(L)}(\lambda)=\left[\partial \boldsymbol{b}^{(L)}\right]^{T}(\boldsymbol{g}),\left.\boldsymbol{g} \stackrel{\text { def }}{=} \nabla \operatorname{Loss}(\boldsymbol{a}, \cdot)\right|_{\boldsymbol{b}^{(L)}(\lambda)}$.

Gradient / Barycenter Computation

$$
\begin{aligned}
& \text { function SINKHORN-DIFFERENTIATE }\left(\left(p_{s}\right)_{s=1}^{S}, q, \lambda\right) \\
& \forall s, b_{s}^{(0)} \leftarrow \mathbb{1} \\
& (w, r) \leftarrow\left(0^{S}, 0^{S \times N}\right) \\
& \text { for } \ell=1,2, \ldots, L \\
& \forall s, \varphi_{s}^{(\ell)} \leftarrow K^{\top} \frac{p_{s}}{K b_{s}^{(\ell-1)}} \\
& p \leftarrow \prod_{s}\left(\varphi_{s}^{(\ell)}\right)^{\lambda_{s}} \\
& \forall s, b_{s}^{(\ell)} \leftarrow \frac{p}{\varphi_{s}^{(\ell)}} \\
& g \leftarrow \nabla \mathcal{L}(p, q) \odot p \\
& \text { for } \ell=L, L-1, \ldots, 1 \quad / / \text { Reverse loop } \\
& \quad \forall s, w_{s} \leftarrow w_{s}+\left\langle\log \varphi_{s}^{(\ell)}, g\right\rangle \\
& \forall s, r_{s} \leftarrow-K^{\top}\left(K\left(\frac{\lambda_{s} g-r_{s}}{\varphi_{s}^{(\ell)}}\right) \odot \frac{p_{s}}{\left(K b_{s}^{(\ell-1)}\right)^{2}}\right) \odot b_{s}^{(\ell-1)} \\
& g \leftarrow \sum_{s} r_{s} \\
& \text { return } P^{(L)}(\lambda) \leftarrow p, \nabla \mathcal{E}_{L}(\lambda) \leftarrow w
\end{aligned}
$$

Application: Volume Reconstruction

Shape database $\left(p_{1}, \ldots, p_{5}\right)$

Input shape q

Projection $P(\lambda)$

Iso-surface
[Bonneel'16]

Application: Color Grading

Application: Color Grading

Application: Color Grading

Application: Color Grading

Wasserstein Barycentric Coordinates: Histogram Regression using Optimal Transport, SIGGRAPH'16

Application: Brain Mapping

Original

Euclidean projection

Wasserstein projection

Application: Brain Mapping

end-to-end W Dictionary Learning

$$
\min _{A \in\left(\Sigma_{n}\right)^{K} \Lambda \in\left(\Sigma_{K}\right)^{N}} \sum_{i=1}^{N} \mathcal{L}\left(\boldsymbol{b}_{\boldsymbol{i}}, \boldsymbol{a}\left(\boldsymbol{\lambda}_{\boldsymbol{i}}\right)\right)
$$

[Schmitz'18]

end-to-end W Dictionary Learning

$$
\min _{A \in\left(\Sigma_{n}\right)^{K} \Lambda \in\left(\Sigma_{K}\right)^{N}} \sum_{i=1}^{N} \mathcal{L}\left(\boldsymbol{b}_{\boldsymbol{i}}, \boldsymbol{a}\left(\boldsymbol{\lambda}_{\boldsymbol{i}}\right)\right)
$$

[Schmitz'18]

Distributionally Robust Optimization

$$
\begin{gathered}
\nu_{\text {data }}=\frac{1}{n} \sum_{i=1}^{N} \delta_{\left(x_{i}, y_{i}\right)} \\
\text { Supervised learning } \\
\inf _{\theta \in \Theta} \mathbb{E}_{\nu_{\text {data }}}\left[\mathcal{L}\left(f_{\theta}(X), Y\right)\right]
\end{gathered}
$$

Learning with Wasserstein Ambiguity

$$
\inf _{\theta \in \Theta} \sup _{\boldsymbol{\mu}: W_{p}\left(\boldsymbol{\nu}_{\text {data }}, \boldsymbol{\mu}\right)<\varepsilon} \mathbb{E}_{\boldsymbol{\mu}}\left[\mathcal{L}\left(f_{\theta}(X), Y\right)\right]
$$

Distributionally Robust Learning

Learning with Wasserstein Ambiguity

$$
\inf _{\theta \in \Theta} \sup _{\sup _{\mu}}\left[\mathcal{L}\left(f_{\theta}(X), Y\right)\right]
$$

Advantages:

- Bound on out-of-sample performance
- Converges as size of dataset increases
- Often reduces to a finite convex program (e.g. when f is element-wise max over elementary concave functions)

Domain Adaptation

1. Estimate transport map
2. Transport labeled samples to new domain
3. Train classifier on transported labeled samples

[Courty'16]

Learning with a Wasserstein Loss

$$
\text { Dataset }\left\{\left(x_{i}, y_{i}\right)\right\}, x_{i} \in \mathbb{R}^{p}, y_{i} \in \mathbb{R}_{+}^{n}
$$

husky
snow
sled
slope
men
y_{i}

Goal is to find $f_{\theta}:$ Images \mapsto Labels

Learning with a Wasserstein Loss

$$
\min _{\theta \in \Theta} \sum_{i=1}^{N} \mathcal{L}\left(f_{\theta}\left(x_{i}\right), y_{i}\right)
$$

husky
snow
sled
slope
men
y_{i}
x_{i}
Which loss \mathcal{L} could we use?

Learning with a Wasserstein Loss

$$
\min _{\theta \in \Theta} \sum_{i=1}^{N} \mathcal{L}\left(f_{\theta}\left(x_{i}\right), y_{i}\right)
$$

Which loss \mathcal{L} could we use?

Learning with a Wasserstein Loss

$$
\min _{\theta \in \Theta} \sum_{i=1}^{N} \mathcal{L}\left(f_{\theta}\left(x_{i}\right), y_{i}\right)
$$

$\mathcal{L}(\boldsymbol{a}, \boldsymbol{b})=\min _{\boldsymbol{P} \in \mathbb{R}^{n m}}\langle\boldsymbol{P}, M\rangle+\varepsilon \mathrm{KL}(\boldsymbol{P 1}, \boldsymbol{a})$

$$
+\varepsilon \mathrm{KL}\left(\boldsymbol{P}^{T} \mathbf{1}, \boldsymbol{b}\right)-\gamma E(\boldsymbol{P})
$$

1. Generalizes Word Mover's to label clouds
2. Sinkhorn algorithm can be generalized
[Frogner'15] [Chizat'15]|Chizat'16]

Minimum Kantorovich Estimation

Available online at www.sciencedirect.com

Statistics \& Probability Letters 76 (2006) 1298-1302

On minimum Kantorovich distance estimators
Federico Bassettia, Antonella Bodini ${ }^{\mathrm{b}}$, Eugenio Regazzini ${ }^{\text {a,* }}$

Use Wasserstein distances to define a loss between data and model.

$\min _{\boldsymbol{\theta} \in \Theta} W\left(\boldsymbol{\nu}_{\mathrm{data}}, p_{\boldsymbol{\theta}}\right)$

Minimum Kantorovich Estimators

$$
\min _{\boldsymbol{\theta} \in \Theta} W\left(\boldsymbol{\nu}_{\text {data }}, f_{\boldsymbol{\theta} \sharp} \boldsymbol{\mu}\right)
$$

[Bassetti'06] 1st reference discussing this approach.

$$
\text { Challenge: } \nabla_{\theta} W\left(\boldsymbol{\nu}_{\text {data }}, f_{\theta \sharp} \boldsymbol{\mu}\right) \text { ? }
$$

[Montavon'16] use regularized OT in a finite setting. [Arjovsky'17] (WGAN) uses a NN to approximate dual solutions and recover gradient w.r.t. parameter [Bernton'17] (Wasserstein ABC)
[Genevay'17, Salimans'17] (Sinkhorn approach)

Proposal: Autodiff OT using Sinkhorn

Approximate W loss by the transport cost \bar{W}_{L} after L Sinkhorn iterations.

$$
000000000000000
$$ ／111／11／1111111 222222222222220 333333333333333 444444444444444 555555355555555 666666666666666 フ7777クフ7フ7フワ7） 888888888888888 999999999999999

Example: MNIST, Learning f_{θ}

Example: Generation of Images

Example: Generation of Images

Concluding Remarks

- Regularized OT is much faster than OT.
- Regularized OT can interpolate between W and the MMD / Energy distance (MMD) metrics.
- The solution of regularized OT is "auto-differentiable".
- Many open problems remain!

What I could not talk about...

- Very large supply of maths...
- Statistical challenges to compute W.
- If linear assignment = Wasserstein, then quadratic assignment $=$ Gromov-Wasserstein.
- Wasserstein gradient flows (a.k.a. JKO flow).
- Dynamical aspects of optimal transport
- Transporting vectors and matrices
- Applications to sampling.

[^0]: 27

