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A SIMPLE ADAPTIVE PROCEDURE LEADING TO
CORRELATED EQUILIBRIUM1

BY SERGIU HART AND ANDREU MAS-COLELL2

We propose a new and simple adaptive procedure for playing a game: ‘‘regret-match-
ing.’’ In this procedure, players may depart from their current play with probabilities that
are proportional to measures of regret for not having used other strategies in the past. It
is shown that our adaptive procedure guarantees that, with probability one, the empirical
distributions of play converge to the set of correlated equilibria of the game.

KEYWORDS: Adaptive procedure, correlated equilibrium, no regret, regret-matching,
simple strategies.

1. INTRODUCTION

THE LEADING NONCOOPERATIVE EQUILIBRIUM NOTIONS for N-person games in
Ž . Ž .strategic normal form are Nash equilibrium and its refinements and corre-

lated equilibrium. In this paper we focus on the concept of correlated equilib-
rium.

Ž .A correlated equilibrium"a notion introduced by Aumann 1974 "can be
described as follows: Assume that, before the game is played, each player

Ž .receives a private signal which does not affect the payoffs . The player may then
choose his action in the game depending on this signal. A correlated equilibrium
of the original game is just a Nash equilibrium of the game with the signals.
Considering all possible signal structures generates all correlated equilibria. If

Ž .the signals are stochastically independent across the players, it is a Nash
Ž .equilibrium in mixed or pure strategies of the original game. But the signals

could well be correlated, in which case new equilibria may obtain.
Equivalently, a correlated equilibrium is a probability distribution on N-tuples

of actions, which can be interpreted as the distribution of play instructions given
to the players by some ‘‘device’’ or ‘‘referee.’’ Each player is given"privately"
instructions for his own play only; the joint distribution is known to all of them.
Also, for every possible instruction that a player receives, the player realizes that
the instruction provides a best response to the random estimated play of the
other players"assuming they all follow their instructions.

Ž .There is much to be said for correlated equilibrium. See Aumann 1974, 1987
for an analysis and foundational arguments in terms of rationality. Also, from a

1 Ž .October 1998 minor corrections: June 1999 . Previous versions: February 1998; November 1997;
Ž .December 1996; March 1996 handout . Research partially supported by grants of the U.S.-Israel

Binational Science Foundation, the Israel Academy of Sciences and Humanities, the Spanish
Ministry of Education, and the Generalitat de Catalunya.

2 We want to acknowledge the useful comments and suggestions of Robert Aumann, Antonio
Cabrales, Dean Foster, David Levine, Alvin Roth, Reinhard Selten, Sylvain Sorin, an editor, the
anonymous referees, and the participants at various seminars where this work was presented.
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practical point of view, it could be argued that correlated equilibrium may be
the most relevant noncooperative solution concept. Indeed, with the possible
exception of well-controlled environments, it is hard to exclude a priori the
possibility that correlating signals are amply available to the players, and thus
find their way into the equilibrium.

This paper is concerned with dynamic considerations. We pose the following
question: Are there simple adapti!e procedures always leading to correlated equilib-
rium?

Ž .Foster and Vohra 1997 have obtained a procedure converging to the set of
Ž .correlated equilibria. The work of Fudenberg and Levine 1999 led to a second

one. We introduce here a procedure that we view as particularly simple and
Ž .intuitive see Section 4 for a comparative discussion of all these procedures . It

does not entail any sophisticated updating, prediction, or fully rational behavior.
Our procedure takes place in discrete time and it specifies that players adjust
strategies probabilistically. This adjustment is guided by ‘‘regret measures’’
based on observation of past periods. Players know the past history of play of all

Žplayers, as well as their own payoff matrix but not necessarily the payoff
.matrices of the other players . Our Main Theorem is: The adaptive procedure

generates trajectories of play that almost surely converge to the set of correlated
equilibria.

The procedure is as follows: At each period, a player may either continue
playing the same strategy as in the previous period, or switch to other strategies,
with probabilities that are proportional to how much higher his accumulated
payoff would have been had he always made that change in the past. More
precisely, let U be his total payoff up to now; for each strategy k different from

Ž .his last period strategy j, let V k be the total payoff he would have received if
Žhe had played k every time in the past that he chose j and everything else

. Ž .remained unchanged . Then only those strategies k with V k larger than U
may be switched to, with probabilities that are proportional to the differences
Ž .V k "U, which we call the ‘‘regret’’ for having played j rather than k. These

probabilities are normalized by a fixed factor, so that they add up to strictly less
than 1; with the remaining probability, the same strategy j is chosen as in the
last period.

It is worthwhile to point out three properties of our procedure. First, its
simplicity; indeed, it is very easy to explain and to implement. It is not more

Ž Ž . Ž .involved than fictitious play Brown 1951 and Robinson 1951 ; note that in the
.two-person zero-sum case, our procedure also yields the minimax value . Sec-

Žond, the procedure is not of the ‘‘best-reply’’ variety such as fictitious play,
Ž Ž ..smooth fictitious play Fudenberg and Levine 1995, 1999 or calibrated learn-

Ž Ž .. .ing Foster and Vohra 1997 ; see Section 4 for further details . Players do not
choose only their ‘‘best’’ actions, nor do they give probability close to 1 to these
choices. Instead, all ‘‘better’’ actions may be chosen, with probabilities that are
proportional to the apparent gains, as measured by the regrets; the procedure
could thus be called ‘‘regret-matching.’’ And third, there is ‘‘inertia.’’ The strategy
played in the last period matters: There is always a positive probability of
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continuing to play this strategy and, moreover, changes from it occur only if
there is reason to do so.

At this point a question may arise: Can one actually guarantee that the
smaller set of Nash equilibria is always reached? The answer is definitely ‘‘no.’’
On the one hand, in our procedure, as in most others, there is a natural
coordination device: the common history, observed by all players. It is thus
reasonable to expect that, at the end, independence among the players will not
obtain. On the other hand, the set of Nash equilibria is a mathematically

Žcomplex set a set of fixed-points; by comparison, the set of correlated equilibria
.is a convex polytope , and simple adaptive procedures cannot be expected to

guarantee the global convergence to such a set.
After this introductory section, in Section 2 we present the model, describe

Ž .the adaptive procedure, and state our result the Main Theorem . Section 3 is
devoted to a ‘‘stylized variation’’ of the procedure of Section 2. It is a variation

Ž .that lends itself to a very direct proof, based on Blackwell’s 1956a Approacha-
bility Theorem. This is a new instrument in this field, which may well turn out to
be widely applicable.

Section 4 contains a discussion of the literature, together with a number of
relevant issues. The proof of the Main Theorem is relegated to the Appendix.

2. THE MODEL AND MAIN RESULT

Ž Ž i. Ž i. . Ž .Let ## N, S , u be a finite N-person game in strategic normali$ N i$ N
form: N is the set of players, Si is the set of strategies of player i, and
ui :Ł Si !! is player i’s payoff function. All sets N and Si are assumed toi$ N
be finite. Denote by S!Ł Si the set of N-tuples of strategies; the generici$ N

Ž i. "ielement of S is s# s , and s denotes the strategy combination of alli$ N
"i Ž i" . "players except i, i.e., s # s . We focus attention on the following solutioni # i

concept:

DEFINITION: A probability distribution $ on S is a correlated equilibrium of #
if, for every i$N, every j$Si and every k$Si we have3

Ž . % iŽ "i . iŽ .&$ s u k , s "u s '0.Ý
is$S : s #j

If in the above inequality we replace the right-hand side by an %$0, then we
obtain the concept of a correlated %-equilibrium.

Note that every Nash equilibrium is a correlated equilibrium. Indeed, Nash
equilibria correspond to the special case where $ is a product measure, that is,
the play of the different players is independent. Also, the set of correlated

Žequilibria is nonempty, closed and convex, and even in simple games e.g.,
.‘‘chicken’’ it may include distributions that are not in the convex hull of the

Nash equilibrium distributions.
3 We write Ý i for the sum over all N-tuples s in S whose ith coordinate s i equals j.s$ S : s # j
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Suppose now that the game # is played repeatedly through time: t#1, 2, . . . .
Ž . t tAt time t(1, given a history of play h # s $Ł S, we postulate thatt & &#1 &#1

each player i$N chooses s i $Si according to a probability distribution4
t(1

i Ž i.p $' S which is defined in the following way:t(1
For every two different strategies j, k$Si of player i, suppose i were to

replace strategy j, every time that it was played in the past, by strategy k; his
payoff at time & , for &' t, would become

iŽ "i . iu k , s , if s # j,& &iŽ . Ž .2.1a W j, k !& i½ Ž .u s , otherwise.&

The resulting difference in i’s average payoff up to time t is then

t t1 1
i i iŽ . Ž . Ž . Ž .2.1b D j, k ! W j, k " u sÝ Ýt & &t t&#1 &#1

1
i "i iŽ . Ž .# u k , s "u s .Ý & &t i&'t : s #j&

Finally, denote
(i i iŽ . Ž . Ž . % Ž . 42.1c R j, k ! D j, k #max D j, k , 0 .t t t

iŽ . Ž .The expression R j, k has a clear interpretation as a measure of the averaget
‘‘regret’’ at period t for not having played, every time that j was played in the
past, the different strategy k.

Fix ($0 to be a large enough number.5 Let j$Si be the strategy last
i i Ž i.chosen by player i, i.e., j#s . Then the probability distribution p $' St t(1

used by i at time t(1 is defined as

1) i iŽ . Ž .p k ! R j, k , for all k# j,t(1 t(*Ž .2.2
i iŽ . Ž .p j !1" p k .Ýt(1 t(1+ ik$S : k#j

i Ž .Note that the choice of ( guarantees that p j $0; that is, there is always at(1
positive probability of playing the same strategy as in the previous period. The

i Ž i. 6play p $' S at the initial period is chosen arbitrarily.1

4 Ž .We write ' Q for the set of probability distributions over a finite set Q.
5 Ž .The parameter ( is fixed throughout the procedure independent of time and history . It suffices

iŽ i . i % iŽ . % ito take ( so that ($2 M m "1 for all i$N, where M is an upper bound for u ) and m is
Ž i . % iŽ "i .the number of strategies of player i. Even better, we could let ( satisfy ($ m "1 u k, s "

iŽ "i . % i " i " i Ž iu j, s for all j, k$S , all s $S , and all i$N and moreover we could use a different ( for
.each player i .

6 Actually, the procedure could start with any finite number of periods where the play is arbitrary.
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Ž .Informally, 2.2 may be described as follows. Player i starts from a ‘‘reference
point’’: his current actual play. His choice next period is governed by propensi-
ties to depart from it. It is natural therefore to postulate that, if a change occurs,
it should be to actions that are perceived as being better, relative to the current
choice. In addition, and in the spirit of adaptive behavior, we assume that all
such better choices get positive probabilities; also, the better an alternative
action seems, the higher the probability of choosing it next time. Further, there

Žis also inertia: the probability of staying put and playing the same action as in
.the last period is always positive.

More precisely, the probabilities of switching to different strategies are
proportional to their regrets relative to the current strategy. The factor of
proportionality is constant. In particular, if the regrets are small, then the
probability of switching from current play is also small.

Ž .For every t, let z $' S be the empirical distribution of the N-tuples oft
strategies played up to time t. That is, for every7 s$S,

1
Ž . Ž . % 42.3 z s ! &' t : s #st &t
is the relative frequency that the N-tuple s has been played in the first t
periods. We can now state our main result.

Ž .MAIN THEOREM: If e!ery player plays according to the adapti!e procedure 2.2 ,
then the empirical distributions of play z con!erge almost surely as t!* to the sett
of correlated equilibrium distributions of the game # .

Note that convergence to the set of correlated equilibria does not imply that
the sequence z converges to a point. The Main Theorem asserts that thet

Ž .following statement holds with probability one: For any %$0 there is T #T %0 0
such that for all t$T we can find a correlated equilibrium distribution $ at a0 t

Ždistance less than % from z . Note that this T depends on the history; it is ant 0
.‘‘a.s. finite stopping time.’’ That is, the Main Theorem says that, with probability

Ž . Ž .one, for any %$0, the random trajectory z , z , . . . , z , . . . enters and then1 2 t
Ž .stays forever in the %-neighborhood in ' S of the set of correlated equilibria.

ŽPut differently: Given any %$0, there exists a constant i.e., independent of
. Ž .history t # t % such that, with probability at least 1"% , the empirical0 0

distributions z for all t$ t are in the %-neighborhood of the set of correlatedt 0
equilibria. Finally, let us note that because the set of correlated equilibria is

Ž .nonempty and compact, the statement ‘‘the trajectory z converges to the sett
Ž .of correlated equilibria’’ is equivalent to the statement ‘‘the trajectory z ist

Ž .such that for any %$0 there is T #T % with the property that z is a1 1 t
correlated %-equilibrium for all t$T .’’1

Ž .We conclude this section with a few comments see also Section 4 :
Ž . Ž .1 Our adaptive procedure 2.2 requires player i to know his own payoff

Ž .matrix but not those of the other players and, at time t(1, the history h ;t
7 % %We write Q for the number of elements of a finite set Q.
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Ž .actually, the empirical distribution z of s , s , . . . , s suffices. In terms oft 1 2 t
computation, player i needs to keep record of the time t together with the

iŽ i . iŽ . i Žm m "1 numbers D j, k for all j#k in S and update these numbers everyt
.period .

Ž .2 At every period the adaptive procedure that we propose randomizes only
over the strategies that exhibit positive regret relative to the most recently
played strategy. Some strategies may, therefore, receive zero probability. Sup-
pose that we were to allow for trembles. Specifically, suppose that at every

Žperiod we put a +$0 probability on the uniform tremble each strategy thus
i.being played with probability at least +,m . It can be shown that in this case

Žthe empirical distributions z converge to the set of correlated %-equilibria oft
.course, % depends on + , and it goes to zero as + goes to zero . In conclusion,

Žunlike most adaptive procedures, ours does not rely on trembles which are
.usually needed, technically, to get the ‘‘ergodicity’’ properties ; moreover, our

result is robust with respect to trembles.
Ž . 83 Our adaptive procedure depends only on one parameter, (. This may be

Ž Ž . Ž ..viewed as an ‘‘inertia’’ parameter see Subsections 4 g and 4 h : A higher (
yields lower probabilities of switching. The convergence to the set of correlated

Ž .equilibria is always guaranteed for any large enough (; see footnote 5 , but the
speed of convergence changes with (.
Ž .4 We know little about additional convergence properties for z . It is easy tot

see that the empirical distributions z either converge to a Nash equilibrium int
pure strategies, or must be infinitely often outside the set of correlated equilib-

Ž 9ria because, if z is a correlated equilibrium from some time on, then allt
.regrets are 0, and the play does not change . This implies, in particular, that

Ž Ž ..interior relative to ' S points of the set of correlated equilibria that are not
Žpure Nash equilibria are unreachable as the limit of some z but it is possiblet

.that they are reachable as limits of a subsequence of z .t
Ž .5 There are other procedures enjoying convergence properties similar to

Ž .ours: the procedures of Foster and Vohra 1997 , of Fudenberg and Levine
Ž .1999 , and of Theorem A in Section 3 below; see the discussion in Section 4.
The delimitation of general classes of procedures converging to correlated
equilibria seems, therefore, an interesting research problem.10

3. NO REGRET AND BLACKWELL APPROACHABILITY

Ž .In this section which can be viewed as a motivational preliminary we shall
replace the adaptive procedure of Section 2 by another procedure that, while
related to it, is more stylized. Then we shall analyze it by means of Blackwell’s
Ž .1956a Approachability Theorem, and prove that it yields convergence to the

8 Ž .Using a parameter ( rather than a fixed normalization of the payoffs was suggested to us by
Reinhard Selten.

9 See the Proposition in Section 3.
10 Ž . Ž .See Hart and Mas-Colell 1999 and Cahn 2000 for such results.
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set of correlated equilibria. In fact, the Main Theorem stated in Section 2, and
its proof in Appendix 1, were inspired by consideration and careful study of the
result of this section. Furthermore, the procedure here is interesting in its own

Žright see, for instance, the Remark following the statement of Theorem A, and
Ž . .d in Section 4 .

Fix a player i and recall the procedure of Section 2: At time t(1 the
transition probabilities, from the strategy played by player i in period t to the
strategies to be played at t(1, are determined by the stochastic matrix defined

Ž . i Ž iŽ .. iby the system 2.2 . Consider now an invariant probability vector q # q jt t j$ S
Ž i. Ž . i$' S for this matrix such a vector always exists . That is, q satisfiest

1 1
i i i i iŽ . Ž . Ž . Ž . Ž .q j # q k R k , j (q j 1" R j, k ,Ý Ýt t t t t( (k#j k#j

for every j$Si. By collecting terms, multiplying by (, and formally letting
iŽ .R j, j !0, the above expression can be rewritten ast

Ž . iŽ . i Ž . iŽ . i Ž .3.1 q k R k , j #q j R j, k ,Ý Ýt t t t
i ik$S k$S

for every j$Si.
In this section we shall assume that play at time t(1 by player i is

i Ž . i Ž . iŽ .determined by a solution q to the system of equations 3.1 ; i.e., p j !q j .t t(1 t
In a sense, we assume that player i at time t(1 goes instantly to the invariant

Ž .distribution of the stochastic transition matrix determined by 2.2 . We now state
the key result.

THEOREM A: Suppose that at e!ery period t(1 player i chooses strategies
i Ž .according to a probability !ector q that satisfies 3.1 . Then player i’s regretst

iŽ . iR j, k con!erge to zero almost surely for e!ery j, k in S with j#k.t

REMARK: Note that"in contrast to the Main Theorem, where every player
Ž .uses 2.2 "no assumption is made in Theorem A on how players different from

Ži choose their strategies except for the fact that for every t, given the history up
.to t, play is independent among players . In the terminology of Fudenberg and

Ž . Ž .Levine 1999, 1998 , the adaptive procedure of this section is ‘‘ universally
Ž .calibrated.’’ For an extended discussion of this issue, see Subsection 4 d .

What is the connection between regrets and correlated equilibria? It turns out
that a necessary and sufficient condition for the empirical distributions to
converge to the set of correlated equilibria is precisely that all regrets converge
to zero. More generally, we have the following proposition.

Ž . Ž .PROPOSITION: Let s be a sequence of plays i.e., s $S for all t andt t#1, 2, . . . t
11 iŽ . ilet %-0. Then: limsup R j, k '% for e!ery i$N and e!ery j, k$S witht !* t

11 Note that both %$0 and %#0 are included.
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Ž Ž ..j#k, if and only if the sequence of empirical distributions z defined by 2.3t
con!erges to the set of correlated %-equilibria.

PROOF: For each player i and every j#k in Si we have

1
i i "i i "iŽ . Ž . Ž .D j, k # u k , s "u j, sÝt & &t i&'t : s #j&

Ž . % iŽ "i . iŽ "i .&# z s u k , s "u j, s .Ý t
is$S : s #j

Ž ."On any subsequence where z converges, say z !$$' S , we gett t

i Ž . Ž . % iŽ "i . iŽ "i .&"D j, k ! $ s u k , s "u j, s .Ýt
is$S : s #j

The result is immediate from the definition of a correlated %-equilibrium and
Ž .2.1c . Q.E.D.

Theorem A and the Proposition immediately imply the following corollary.

COROLLARY: Suppose that at each period t(1 e!ery player i chooses strategies
i Ž .according to a probability !ector q that satisfies 3.1 . Then the empirical distribu-t

tions of play z con!erge almost surely as t!* to the set of correlated equilibria oft
the game # .

Before addressing the formal proof of Theorem A, we shall present and
discuss Blackwell’s Approachability Theorem.

Ž . iThe basic setup contemplates a decision-maker i with a finite action set S .
% %For a finite indexing set L, the decision-maker receives an L -dimensional

Ž i "i. L i ivector payoff ! s , s $! that depends on his action s $S and on some
"i Ž . "i Žexternal action s belonging to a finite set S we will refer to "i as the

. Ž i "i.‘‘opponent’’ . The decision problem is repeated through time. Let s # s , st t t

$Si &S"i denote the choices at time t; of course, both i and "i may use
randomizations. The question is whether the decision-maker i can guaran-

Ž . Ž .tee that the time average of the vector payoffs, D ! 1,t Ý ! s 't & ' t &
Ž . Ž i "i. Ž L.1,t Ý ! s , s , approaches a predetermined set in ! .& ' t & &

Let CC be a convex and closed subset of ! L. The set CC is approachable by the
decision-maker i if there is a procedure12 for i that guarantees that the average

Ž 13 Ž .vector payoff D approaches the set CC i.e., dist D , CC !0 almost surely ast t
.t!* , regardless of the choices of the opponent "i. To state Blackwell’s result,

12 Ž .In the repeated setup, we refer to a behavior strategy as a ‘‘procedure.’’
13 Ž . %( ( 4 ( (dist x, A !min x"a : a$A , where ) is the Euclidean norm. Strictly speaking, Blackwell’s

definition of approachability requires also that the convergence of the distance to 0 be uniform over
the procedures of the opponent; i.e., there is a procedure of i such that for every %$0 there is

Ž . % Ž . &t ' t % such that for any procedure of "i we have P dist D , CC )% for all t$ t $1"% . The0 0 t 0
Ž .Blackwell procedure defined in the next Theorem guarantees this as well.
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Ž . %let w denote the support function of the convex set CC, i.e., w , !sup ,)c :CC CC
4 L L Ž .c$CC for all , in ! . Given a point x$! which is not in CC, let F x be

Ž .the unique point in CC that is closest to x in the Euclidean distance, and
Ž . Ž . Ž .put , x !x"F x ; note that , x is an outward normal to the set CC at the
Ž .point F x .

BLACKWELL’S APPROACHABILITY THEOREM: Let CC.! L be a con!ex and
closed set, with support function w . Then CC is approachable by i if and only if forCC

L Ž i. 14e!ery ,$! there exists a mixed strategy q $' S such that,

Ž . Ž "i . Ž . "i "i3.2 ,)! q , s 'w , , for all s $S ., CC

Ž .Moreo!er, the following procedure of i guarantees that dist D , CC con!erges almostt
surely to 0 as t!*: At time t(1, play q if D !CC, and play arbitrarily,ŽD . tt

if D $CC.t

We will refer to the condition for approachability given in the Theorem as the
Blackwell condition, and to the procedure there as the Blackwell procedure. To

Ž .get some intuition for the result, assume that D is not in CC, and let HH D bet t
L Ž .the half-space of ! that contains CC and not D and is bounded by thet

Ž . Ž .supporting hyperplane to CC at F D with normal , D ; see Figure 1. When it t
Ž "i . Ž .uses the Blackwell procedure, it guarantees that ! q , s lies in HH D for,ŽD . tt"i "i Ž Ž ..all s in S by 3.2 . Therefore, given D , the expectation of the next periodt

FIGURE 1."Approaching the set CC.

14 Ž "i . Ž i. Ž i " i.i i! q, s denotes the expected payoff, i.e., Ý q s ! s , s . Of course, only ,#0 withs $ S
Ž . Ž .w , )* need to be considered in 3.2 .CC
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% Ž . & Ž . "ipayoff E ! s *D will lie in the half-space HH D for any pure choice s oft(1 t t t(1
"i at time t(1, and thus also for any randomized choice of "i. The expected

Ž .average vector payoff at period t(1 conditional on D ist

t 1
% & % Ž . &E D *D # D ( E ! s *D .t(1 t t t(1 tt(1 t(1

% & Ž .When t is large, E D *D will thus be inside the circle of center F D andt(1 t t
( Ž .(radius , D . Hencet

Ž % & . % & Ž . Ž .dist E D *D , CC ' E D *D "F D ) , Dt(1 t t(1 t t t

Ž .#dist D , CCt

Ž Ž . .the first inequality follows from the fact that F D is in CC . A preciset
computation shows that the distance not only decreases, but actually goes to

15 16 Ž .zero. For proofs of Blackwell’s Approachability Theory, see Blackwell 1956a ,
Ž .or Mertens, Sorin, and Zamir 1995, Theorem 4.3 .

We now prove Theorem A.

PROOF OF THEOREM A: As mentioned, the proof of this Theorem consists of
an application of Blackwell’s Approachability Theorem. Let

% Ž . i i 4L! j, k $S &S : j#k ,

Ž i "i. L Ž .and define the vector payoff ! s , s $! by letting its j, k $L coordin-
ate be

iŽ "i . Ž "i . iu k , s "u j, s , if s # j,i "i% Ž .&Ž .! s , s j, k ! ½ 0, otherwise.
L % L 4Let CC be the nonpositive orthant ! ! x$! : x'0 . We claim that CC is"

Ž .approachable by i. Indeed, the support function of CC is given by w , #0 forCC
L Ž . Lall ,$! and w , #* otherwise; so only ,$! need to be considered.( CC (
Ž .Condition 3.2 is

Ž . Ž i . % Ž i "i .&Ž ., j, k q s ! s , s j, k '0,Ý Ý ,
i iŽ .j , k $L s $S

or

Ž . Ž . Ž . % iŽ "i . iŽ "i .&3.3 , j, k q j u k , s "u j, s '0Ý ,
Ž .j , k $L

15 Note that one looks here at expected average payoffs; the Strong Law of Large Numbers for
Dependent Random Variables"see the Proof of Step M10 in the Appendix"implies that the
actual average payoffs also converge to the set CC.

16 Ž . Ž i.The Blackwell condition is usually stated as follows: For every x!CC there exists q x $' S
% Ž .& % Ž Ž . "i . Ž .& "i " isuch that x"F x ) ! q x , s "F x '0, for all s $S . It is easy to verify that this is

equivalent to our formulation. We further note a simple way of stating the Blackwell result: A
convex set CC is approachable if and only if any half-space containing CC is approachable.
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"i "i Ž .for all s $S . After collecting terms, the left-hand side of 3.3 can be written
as

Ž . Ž . iŽ "i .3.4a - j u j, s ,Ý
ij$S

where

Ž . Ž . Ž . Ž . Ž . Ž .3.4b - j ! q k , k , j "q j , j, k .Ý Ý, ,
i ik$S k$S

Ž i. i iLet q $' S be an invariant vector for the nonnegative S &S matrix with,
Ž . Ž .entries , j, k for j#k and 0 for j#k such a q always exists . That is, q, ,

satisfies

Ž . Ž . Ž . Ž . Ž .3.5 q k , k , j #q j , j, k ,Ý Ý, ,
i ik$S k$S

i Ž . i Ž .for every j$S . Therefore - j #0 for all j$S , and so inequality 3.3 holds
Ž 17 . "i "itrue as an equality for all s $S . The Blackwell condition is thus satisfied

by the set CC#! L."
Ž .Consider D , the average payoff vector at time t. Its j, k -coordinate ist

Ž . % Ž .&Ž . iŽ . L1,t Ý ! s j, k #D j, k . If D !! , then the closest point to D in& ' t & t t " t
L Ž . % &" Ž . Ž . % &" % &(! is F D # D see Figure 2 , hence , D #D " D # D #" t t t t t t

Ž iŽ ..R j, k , which is the vector of regrets at time t. Now the given strategyt Ž j, k .$ L

FIGURE 2."Approaching CC#! L."

17 Ž .Note that this is precisely Formula 2 in the Proof of Theorem 1 in Hart and Schmeidler
Ž . Ž .1989 ; see Subsection 4 i .
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Ž . Ž . Ž .of i at time t(1 satisfies 3.1 , which is exactly condition 3.5 for ,#, D .t
Hence player i uses the Blackwell procedure for ! L, which guarantees that the"

L iŽ .average vector payoff D approaches ! , or R j, k !0 a.s. for every j#k.t " t
Q.E.D.

REMARK: The proof of Blackwell’s Approachability Theorem also provides
bounds on the speed of convergence. In our case, one gets the following: The

i '% Ž .&expectation E R j, k of the regrets is of the order of 1, t , and the probabil-t
"c T Žity that z is a correlated %-equilibrium for all t$T is at least 1"ce for ant

Žappropriate constant c$0 depending on % ; see Foster and Vohra 1999,
.. 18Section 4.1 . Clearly, a better speed of convergence for the expected regrets

cannot be guaranteed, since, for instance, if the other players play stationary
'mixed strategies, then the errors are of the order 1, t by the Central Limit

Theorem.

4. DISCUSSION

This section discusses a number of important issues, including links and
comparisons to the relevant literature.
Ž .a Foster and Vohra. The seminal paper in this field of research is Foster and

Ž .Vohra 1997 . They consider, first, ‘‘forecasting rules’’"on the play of
others"that enjoy good properties, namely, ‘‘calibration.’’ Second, they assume
that each player best-replies to such calibrated forecasts. The resulting proce-
dure leads to correlated equilibria. The motivation and the formulation are
quite different from ours; nonetheless, their results are close to our results
Ž .specifically, to our Theorem A , since their calibrated forecasts are also based
on regret measures.19

Ž .b Fudenberg and Le!ine. The next important paper is Fudenberg and Levine
Ž . Ž Ž ..1999 see also their book 1998 . In that paper they offer a class of adaptive
procedures, called ‘‘calibrated smooth fictitious play,’’ with the property that for
every %$0 there are procedures in the class that guarantee almost sure

Žconvergence to the set of correlated %-equilibria but the conclusion does not
.hold for %#0 . The formal structure of these procedures is also similar to that

of our Theorem A, in the sense that the mixed choice of a given player at time t
is determined as an invariant probability vector of a transition matrix. However,

Ž .the transition matrix and therefore the stochastic dynamics is different from
the regret-based transition matrix of our Theorem A. To understand further the
similarities and differences between the Fudenberg and Levine procedures and

Ž . Ž .our own, the next two Subsections, c and d , contain a detour on the concepts
of ‘‘universal consistency’’ and ‘‘universal calibration.’’

18 Up to a constant factor.
19 Ž "i .These regrets are defined on an %-grid on ' S , with % going to zero as t goes to infinity.

Therefore, at each step in their procedure one needs to compute the invariant vector for a matrix of
an increasingly large size; by comparison, in our Theorem A the size of the matrix is fixed, mi &mi.
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Ž .c Uni!ersal Consistency. The term ‘‘universal consistency’’ is due to Fuden-
Ž . Ž .berg and Levine 1995 . The concept goes back to Hannan 1957 , who proved

Ž .the following result: There is a procedure in the setup of Section 2 for player i
that guarantees, no matter what the other players do, that

t t1 1
i "i iŽ . Ž . Ž .4.1 limsup max u k , s " u s '0 a.s.Ý Ý& &

i t tk$St!* &#1 &#1

In other words, i’s average payoff is, in the limit, no worse than if he were to
play any constant strategy k$Si for all &' t. This property of the Hannan
procedure for player i is called uni!ersal consistency by Fudenberg and Levine
Ž . Ž .1995 it is ‘‘universal’’ since it holds no matter how the other players play .

Ž .Another universally consistent procedure was shown by Blackwell 1956b to
Ž Žresult from his Approachability Theorem see also Luce and Raiffa 1957, pp.

..482!483 .
The adaptive procedure of our Theorem A is also universally consistent.

i Ž .Indeed, for each j in S , 4.1 is guaranteed even when restricted to those
periods when player i chose that particular j; this being true for all j in Si, the
result follows. However, the application of Blackwell’s Approachability Theorem
in Section 3 suggests the following particularly simple procedure.

At time t, for each strategy k in Si, let

t1
i i "i iŽ . Ž . Ž . Ž .4.2a D k ! u k , s "u s ,Ýt & &t &#1

(iŽ .D ktiŽ . Ž .4.2b p k ! ,(t(1 "iŽ .D kÝ t
" ik $S

i Ž i.if the denominator is positive, and let p $' S be arbitrary otherwise. Thet(1
strategy of player i is then, at time t(1, to choose k in Si with probability

i Ž .p k . These probabilities are thus proportional to the ‘‘unconditional regrets’’t(1

% iŽ .&( Ž .D k by comparison to the ‘‘conditional on j’’ regrets of Section 2 . Wet
then have the following theorem.

Ž .THEOREM B: The adapti!e procedure 4.2 is uni!ersally consistent for player i.

The proof of Theorem B is similar to the proof of Theorem A in Section 3
and is omitted.

Ž .Fudenberg and Levine 1995 propose a class of procedures that turn out to
be universally %-consistent:20 ‘‘smooth fictitious play.’’ Player i follows a smooth

i Ž i.fictitious play behavior rule if at time t he plays a mixed strategy . $' S that
Žmaximizes the sum of his expected payoff with the actions of the remaining

20 Ž .That is, the right-hand side of 4.1 is %$0 instead of 0.
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. iŽ i.players distributed as in the empirical distribution up to t and ,! . , where
,$0 and ! i is a strictly concave smooth function defined on i’s strategy

Ž i. Ž i.simplex, ' S , with infinite length gradient at the boundary of ' S . The result
of Fudenberg and Levine is then that, given any %$0, there is a sufficiently
small , such that universal %-consistency obtains for player i. Observe that, for

Žsmall ,, smooth fictitious play is very close to fictitious play it amounts to
playing the best response with high probability and the remaining strategies with

.low but positive probability . The procedure is, therefore, clearly distinct from
Ž . Ž .4.2 : In 4.2 all the better, even if not best, replies are played with significant

Ž .probability; also, in 4.2 the inferior replies get zero probability. Finally, it is
worth emphasizing that the tremble from best response is required for the
Fudenberg and Levine result, since fictitious play is not guaranteed to be

Ž .consistent. In contrast, the procedure of 4.2 has no trembles.
Ž .The reader is referred to Hart and Mas-Colell 1999 , where a wide class of

Žuniversally consistent procedures is exhibited and characterized including as
Ž . .special cases 4.2 as well as smooth fictitious play .

Ž . 21d Uni!ersal Calibration. The idea of ‘‘universal calibration,’’ also introduced
Ž .by Fudenberg and Levine 1998, 1999 , is that, again, regret measures go to zero

irrespective of the other players’ play. The difference is that, now, the set of
regret measures is richer: It consists of regrets that are conditional on the
strategy currently played by i himself. Recall the Proposition of Section 3: If
such universally calibrated strategies are played by all players, then all regrets
become nonpositive in the limit, and thus the convergence to the correlated
equilibrium set is guaranteed.

Ž .The procedure of Theorem A is universally calibrated; so up to % is the
Ž .‘‘calibrated smooth fictitious play’’ of Fudenberg and Levine 1999 . The two

procedures stand to each other as, in the unconditional version, Theorem B
stands to ‘‘smooth fictitious play.’’

Ž .The procedure 2.2 of our Main Theorem is not universally calibrated. If only
player i follows the procedure, we cannot conclude that all his regrets go to
zero; adversaries who know the procedure used by player i could keep his
regrets positive.22 Such sophisticated strategies of the other players, however,
are outside the framework of our study"which deals with simple adaptive
behavior. In fact, it turns out that the procedure of our Main Theorem is
guaranteed to be calibrated not just against opponents using the same proce-
dure, but also against a wide class of behaviors.23

Ž .We regard the simplicity of 2.2 as a salient point. Of course, if one needs to
guarantee calibration even against sophisticated adversaries, one may have to
give up on simplicity and resort to the procedure of Theorem A instead.

21 They actually call it ‘‘calibration’’; we prefer the term ‘‘universal calibration,’’ since it refers to
Ž % & .any behavior of the opponents as in their ‘‘ conditional universal consistency’’ .

22 Ž .At each time t(1, let them play an N"1 -tuple of strategies that minimizes the expected
Ž i . Ž .relative to p payoff of player i; for an example, see Fudenberg and Levine 1998, Section 8.10 .t(1

23 Namely, such that the dependence of any one choice of "i on any one past choice of i is small,
Ž .relative to the number of periods; see Cahn 2000 .
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Ž .e Better-reply !s. Best-reply. Note that all the procedures in the literature
Ž .reviewed above are best-reply-based: A player uses almost exclusively actions

Ž .that are almost best-replies to a certain belief about his opponents. In contrast,
our procedure gives significant probabilities to any actions that are just better
Ž .rather than best . This has the additional effect of making the behavior
continuous, without need for approximations.
Ž .f Eigen!ector Procedures. The procedure of our Main Theorem differs from

Žall the other procedures leading to correlated equilibria including that of our
.Theorem A in an important aspect: It does not require the player to compute,

Ž .at every step, an invariant eigen- vector for an appropriate positive matrix.
24 Ž .Again, the simplicity of 2.2 is an essential property when discussing nonso-

phisticated behavior; this is the reason we have sought this result as our Main
Theorem.
Ž .g Inertia. A specific and most distinctive feature by which the procedure of

our Main Theorem differs from those of Theorem A and the other works
mentioned above is that in the former the individual decisions privilege the most
recent action taken: The probabilities used at period t(1 are best thought of as
propensities to depart from the play at t.

Viewed in this light, our procedure has significant inertial characteristics. In
particular, there is a positive probability of moving from the strategy played at t

Žonly if there is another that appears better in which case the probabilities of
playing the better strategies are proportional to the regrets relative to the period

. 25t strategy .
Ž . Ž .h Friction. The procedure 2.2 exhibits ‘‘friction’’: There is always a positive

probability of continuing with the period t strategy.26 To understand the role
27 Ž .played by friction, suppose that we were to modify the procedure 2.2 by

requiring that the switching probabilities be rescaled in such a way that a switch
Žoccurs if and only if there is at least one better strategy i.e., one with positive

.regret . Then the result of the Main Theorem may not hold. For example, in the
familiar two-person 2&2 coordination game, if we start with an uncoordinated
strategy pair, then the play alternates between the two uncoordinated pairs.
However, no distribution concentrated on these two pairs is a correlated
equilibrium.

It is worth emphasizing that in our result the breaking away from a bad cycle,
like the one just described, is obtained not by ergodic arguments but by the

Ž .probability of staying put i.e., by friction . What matters is that the diagonal of

24 For a good test of the simplicity of a procedure, try to explain it verbally; in particular, consider
the procedure of our Main Theorem vs. those requiring the computation of eigenvectors.

25 It is worth pointing out that if a player’s last choice was j, then the relative probabilities of
switching to k or to k" do not depend only on the average utilities that would have been obtained if
j had been changed to k or to k" in the past, but also on the average utility that was obtained in

Ž "those periods by playing j itself it is the magnitude of the increases in moving from j to k or to k
.that matters .

26 Ž . Ž .See Sanchirico 1996 and Section 4.6 in Fudenberg and Levine 1998 for a related point in a
best-reply context.

27 See Step M7 in the Proof of the Main Theorem in the Appendix.
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the transition matrix be positive, rather than that all the entries be positive
Ž .which, indeed, will not hold in our case .
Ž .i The set of correlated equilibria. The set of correlated equilibria of a game is,

in contrast to the set of Nash equilibria, geometrically simple: It is a convex set
Ž .actually, a convex polytope of distributions. Since it includes the Nash equilib-

Ž . Žria we know it is nonempty. Hart and Schmeidler 1989 see also Nau and
Ž .. Ž .McCardle 1990 provide an elementary nonfixed point proof of the nonempti-

ness of the set of correlated equilibria. This is done by using the Minimax
Theorem. Specifically, Hart and Schmeidler proceed by associating to the given
N-person game an auxiliary two-person zero-sum game. As it turns out, the
correlated equilibria of the original game correspond to the maximin strategies
of player I in the auxiliary game. More precisely, in the Hart!Schmeidler
auxiliary game, player I chooses a distribution over N-tuples of actions, and
player II chooses a pair of strategies for one of the N original players
Ž .interpreted as a play and a suggested deviation from it . The payoff to auxiliary
player II is the expected gain of the designated original player if he were to
follow the change suggested by auxiliary player II. In other words, it is the
‘‘regret’’ of that original player for not deviating. The starting point for our
research was the observation that fictitious play applied to the Hart!Schmeidler

Ž .auxiliary game must converge, by the result of Robinson 1951 , and thus yield
optimal strategies in the auxiliary game, in particular for player I"hence,
correlated equilibria in the original game. A direct application of this idea does
not, however, produce anything that is simple and separable across the N

Žplayers i.e., such that the choice of each player at time t is made independently
. 28of the other players’ choices at t"an indispensable requirement . Yet,

our adaptive procedure is based on ‘‘no-regret’’ ideas motivated by this analysis
and it is the direct descendant"several modifications later"of this line of
research.29

Ž .j The case of the unknown game. The adaptive procedure of Section 2 can be
modified30 to yield convergence to correlated equilibria also in the case where
players neither know the game, nor observe the choices of the other players.31

Specifically, in choosing play probabilities at time t(1, a player uses informa-
Žtion only on his own actual past play and payoffs and not on the payoffs that

.would have been obtained if his past play had been different . The construction

28 This needed ‘‘decoupling’’ across the N original players explains why applying linear program-
ming-type methods to reach the convex polytope of correlated equilibria is not a fruitful approach.

Ž Ž ..The resulting procedures operate in the space of N-tuples of strategies S more precisely, in ' S ,
Ž Ž i..whereas adaptive procedures should be defined for each player i separately i.e., on ' S .

29 Ž .For another interesting use of the auxiliary two-person zero-sum game, see Myerson 1997 .
30 Following a suggestion of Dean Foster.
31 Ž . Ž . Ž .For similar constructions, see: Banos 1968 , Megiddo 1980 , Foster and Vohra 1993 , Auer˜

Ž . Ž . Ž . Ž . Žet al. 1995 , Roth and Erev 1995 , Erev and Roth 1998 , Camerer and Ho 1998 , Marimon 1996,
. Ž .Section 3.4 , and Fudenberg and Levine 1998, Section 4.8 . One may view this type of result in

terms of ‘‘stimulus-response’’ decision behavior models.



CORRELATED EQUILIBRIUM 1143

iŽ . Ž Ž ..is based on replacing D j, k see 2.1b byt

i Ž .1 p j&i i iŽ . Ž . Ž .C j, k ! u s " u s .Ý Ýt & &i Ž .t p ki i&&'t : s #k &'t : s #j& &

Thus, the payoff that player i would have received had he played k rather than
j is estimated by the actual payoffs he obtained when he did play k in the past.

For precise formulations, results and proofs, as well as further discussions,
Ž .the reader is referred to Hart and Mas-Colell 2000 .
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APPENDIX : PROOF OF THE MAIN THEOREM

This appendix is devoted to the proof of the Main Theorem, stated in Section 2. The proof is
Ž .inspired by the result of Section 3 Theorem A . It is however more complex on account of our

transition probabilities not being the invariant measures that, as we saw in Section 3, fitted so well
with Blackwell’s Approachability Theorem.

As in the standard proof of Blackwell’s Approachability Theorem, the proof of our Main
Theorem is based on a recursive formula for the distance of the vector of regrets to the negative

Ž .orthant. However, our procedure 2.2 does not satisfy the Blackwell condition; it is rather a sort of
Ž .iterative approximation to it. Thus, a simple one-period recursion from t to t(1 does not suffice,

and we have to consider instead a multi-period recursion where a large ‘‘block’’ of periods, from t to
t(! , is combined together. Both t and ! are carefully chosen; in particular, t and ! go to infinity,
but ! is relatively small compared to t.

We start by introducing some notation. Fix player i in N. For simplicity, we drop reference to the
Ž i iindex i whenever this cannot cause confusion thus we write D and R instead of D and R , andt t t t

. % i %so on . Let m! S be the number of strategies of player i, and let M be an upper bound on i’s
% iŽ . % %Ž . i i 4 Lpossible payoffs: M- u s for all s in S. Denote L! j, k $S &S : j#k ; then ! is the

Ž .m m"1 -dimensional Euclidean space with coordinates indexed by L. For each t#1, 2, . . . and
Ž . 32each j, k in L, put

Ž . % iŽ "i . i Ž .&iA j, k #1 u k , s "u s ,t % s # j4 t tt

1
Ž . Ž .D j, k # A j, k ,Ýt &t

&#1
((Ž . Ž . % Ž .&R j, k #D j, k ' D j, k .t t t

Ž Ž .. L (We shall write A for the vector A j, k $! ; the same goes for D , D , R , and so on. Lett t j# k t t t

32 We write 1 for the indicator of the event G.G
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Ž . Ž/ ), ) denote the transition probabilities from t to t(1 these are computed after period t, basedt
.on h :t

1) Ž .R j, k , if k# j,t(*Ž ./ j, k !t 1
"Ž .1" R j, k , if k# j.Ý t+ ("k # j

Thus, at time t(1 the strategy used by player i is to choose each k$Si with probability
i Ž . Ž i . Ž . ip k #/ s , k . Note that the choice of ( guarantees that / j, j $0 for all j$S and all t.t(1 t t t

Finally, let
2L% Ž .&0 ! dist D , !t t "

Ž L. Lbe the squared distance in ! of the vector D to the nonpositive orthant ! . Since the closestt "
L 33 " ( "( 2 ( (( 2 % (Ž .&2point to D in ! is D , we have 0 # D "D # D #Ý D j, k .t " t t t t t j# k t

Ž .It will be convenient to use the standard ‘‘O’’ notation: For two real-valued functions f ) and
Ž . Ž . Ž Ž ..g ) defined on a domain X, ‘‘ f x #O g x ’’ means that there exists a constant K)* such that

% Ž . % Ž . 34f x 'Kg x for all x in X. We write P for Probability, and E for Expectation. From now on, t,
Ž . i! , and w will denote positive integers; h # s will be histories of length t; j, k, and s will bet & & ' t

elements of Si; s and s"i will be elements of S and S"i , respectively. Unless stated otherwise, all
statements should be understood to hold ‘‘for all t, ! , h , j, k, etc.’’; where histories h aret t
concerned, only those that occur with positive probability are considered.

We divide the proof of the Main Theorem into 11 steps, M1!M11, which we now state formally;
an intuitive guide follows.

! Step M1:
!

2 2 2Ž . %Ž . & % & Ž .i E t(! 0 *h ' t 0 (2 t R )E A *h (O ! ; andÝt(! t t t t(w t
w#1

2 2 2Ž . Ž . Ž .ii t(! 0 " t 0 #O t! (! .t(! t

Define

Ž "i . Ž . % Ž "i . & % Ž "i . &- j, s ! / k , j P s # k , s *h "P s # j, s *h .Ýt , w t t(w t t(w t
ik$S

! Step M2:

% & Ž "i . iŽ "i .R )E A *h #( - j, s u j, s .Ý Ýt t(w t t , w
"i " i is $S j$S

! Step M3:
!

Ž . Ž .R j, k "R j, k #O .t(! t ž /t
Ž .For each t$0 and each history h , define an auxiliary stochastic process s with valuesˆt t(w w#0, 1, 2, . . .

in S as follows: The initial value is s #s , and the transition probabilities are35
t̂ t

% & i"Ž i" i" .P s #s *s , . . . , s ! / s , s .ˆ ˆ ˆ ˆŁt(w t t(w"1 t t(w"1
"i $N

33 % &" % 4 " Ž% Ž .&".We write x for min x, 0 , and D for the vector D j, k .t t Ž j, k .$ L
34 The domain X will usually be the set of positive integers, or the set of vectors whose

Ž . Ž . % Ž . %coordinates are positive integers. Thus when we write, say, f t, ! #O ! , it means f t, ! 'K! for
Ž .all ! and t. The constants K will always depend only on the game through N, m, M, and so on and

on the parameter (.
35 i" " Ž i.We write / for the transition probability matrix of player i thus / is / .t t t
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ŽThe s-process is thus stationary: It uses the transition probabilities of period t at each period t(w,ˆ
.for all w-0.

! Step M4:

w2

% & % &P s #s *h "P s #s *h #O .ˆt(w t t(w t ž /t

Define

Ž "i . Ž . % Ž "i . & % Ž "i . &- j, s ! / k , j P s # k , s *h "P s # j, s *h .ˆ ˆ ˆÝt , w t t(w t t(w t
ik$S

! Step M5:

w2
" i " iŽ . Ž .- j, s "- j, s #O .ˆt , w t , w ž /t

! Step M6:

Ž "i . % "i " i & % w( 1 w &Ž i .- j, s #P s #s *h / "/ s , j ,ˆ ˆt , w t(w t t t t

w Ž .w % w( 1 w &Ž i . Ž i .where / ' / is the wth power of the matrix / , and / "/ s , j denotes the s , jt t t t t t t
element of the matrix / w( 1 "/ w.t t

! Step M 7:

Ž "1 . Ž "1 ,2 .- j, s #O w .ˆt , w

! Step M8:

2 2 3 1,2%Ž . & Ž .E t(! 0 *h ' t 0 (O ! ( t! .t(! t t

, 5,3 - 5,3For each n#1, 2, . . . , let t ! n be the largest integer not exceeding n .n
! Step M9:

% 2 & 2 Ž 2 .E t 0 *h ' t 0 (O n .n( 1 t t n tn(1 n n

! Step M10:

lim 0 #0 a.s.tnn!*

! Step M11:

Ž .lim R j, k #0 a.s.t
t!*

Ž Ž ..We now provide an intuitive guide to the proof. The first step M1 i is our basic recursion
Žequation. In Blackwell’s Theorem, the middle term on the right-hand side vanishes it is '0 by

Ž ..3.2 . This is not so in our case; Steps M2!M8 are thus devoted to estimating this term. Step M2
Ž .yields an expression similar to 3.4 , but here the coefficients - depend also on the moves of the

i " i Žother players. Indeed, given h , the choices s and s are not independent when w$1 sincet t(w t(w
. Ž .the transition probabilities change with time . Therefore we replace the process s byt(w 0 ' w ' !

Ž . Ž .another process s , with a stationary transition matrix that of period t . For w smallt̂(w 0 ' w ' !
Ž .relative to t, the change in probabilities is small see Steps M3 and M4 , and we estimate the total

Ž . Ž . Ždifference Step M5 . Next Step M6 , we factor out the moves of the other players which, in the
.s-process, are independent of the moves of player i from the coefficients - . At this point we get theˆ ˆ
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Ždifference between the transition probabilities after w periods and after w(1 periods for
Ž .comparison, in formula 3.4 we would replace both by the invariant distribution, so the difference

. Ž .vanishes . This difference is shown Step M7 to be small, since w is large and the transition matrix
36 Ž .has all its diagonal elements strictly positive. Substituting in M1 i yields the final recursive

Ž . Ž .formula Step M8 . The proof is now completed Steps M9!M11 by considering a carefully chosen
Ž .subsequence of periods t .n n#1, 2, . . .

The rest of this Appendix contains the proofs of the Steps M1!M11.

! " LPROOF OF STEP M1: Because D $! we havet "

2!t 12" "( (0 ' D "D # D ( A "DÝt(! t(! t t t(w tt(! t(! w#1

2 !t 2 t2" " "( ( Ž . Ž .# D "D ( A "D ) D "DÝt t t(w t t t2 2Ž . Ž .t(! t(! w#1

22 !! 1 "( A "DÝ t(w t2 !Ž .t(! w#1

2 ! 2t 2 t !
2Ž .' 0 ( A )R ( m m"1 16M .Ýt t(w t2 2 2Ž . Ž . Ž .t(! t(! t(!w#1

% iŽ . % % Ž . % % Ž . %Indeed: u s 'M, so A j, k '2 M and D j, k '2 M, yielding the upper bound on the thirdt(w t
term. As for the second term, note that R #D( #D "D" and D" )D( #0. This gives the boundt t t t t t

Ž . Ž . Ž .of ii . To get i , take conditional expectation given the history h so 0 and R are known . Q.E.D.t t t

! PROOF OF STEP M2: We have

% Ž . & Ž "i . % i Ž "i . iŽ "i .&E A j, k *h # 1 j, s u k , s "u j, s ,Ýt(w t
"is

Ž "i . % Ž "i . &where 1 j, s !P s # j, s *h . Sot(w t

% & Ž . Ž "i . % i Ž "i . iŽ "i .&R )E A *h # R j, k 1 j, s u k , s "u j, sÝ Ý Ýt t(w t t
"ij k# j s

i " i " i " iŽ . Ž . Ž . Ž . Ž .# u j, s R k , j 1 k , s " R j, k 1 j, sÝÝ Ý Ýt t
"i j k# j k# js

Ž iŽ "i .. Ž . Ž .we have collected together all terms containing u j, s . Now, R k, j #(/ k, j for k# j, andt t
Ž . Ž Ž ..Ý R j, k #( 1"/ j, j by definition, sok # j t t

i " i " i " i% & Ž . Ž . Ž . Ž .R )E A *h #( u j, s / k , j 1 k , s "1 j, sÝÝ Ýt t(w t t
"i j ks

Ž i.note that the last sum is now over all k in S . Q.E.D.

! PROOF OF STEP M3: This follows immediately from
!

Ž . % Ž . Ž .& Ž . Ž .t(! D j, k "D j, k # A j, k "!D j, k ,Ýt(! t t(w t
w#1

% Ž . % % Ž . %together with A j, k '2 M and D j, k '2 M. Q.E.D.t(w t

36 For further discussion on this point, see the Proof of Step M7.
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! PROOF OF STEP M4: We need the following Lemma, which gives bounds for the changes in the
w-step transition probabilities as a function of changes in the 1-step transitions.

Ž . Ž .LEMMA: Let X and Y be two stochastic processes with !alues in a finite set B. Assumen n- 0 n n- 0
X #Y and0 0

% & % &P X #b *X #b , . . . , X #b "P Y #b *Y #b , . . . , Y #b '2n n 0 0 n"1 n"1 n n 0 0 n"1 n"1 n

for all n-1 and all b , . . . , b , b $B. Then0 n"1 n

% &P X #b *X #b , . . . , X #bn( w n(w 0 0 n"1 n"1

w

% & % %"P Y #b *Y #b , . . . , Y #b ' B 2Ýn( w n(w 0 0 n"1 n"1 n(r
r#0

for all n-1, w-0, and all b , . . . , b , b $B.0 n"1 n(w

Ž . Ž .PROOF: We write P and P for the probabilities of the two processes X and Y ,X Y n n n n
Ž % & % &respectively thus P b *b , . . . , b stands for P X #b *X #b , . . . , X #b , andX n(w 0 n"1 n(w n(w 0 0 n"1 n"1

.so on . The proof is by induction on w.

% &P b *b , . . . , bX n(w 0 n"1

% & % &# P b *b , . . . , b P b *b , . . . , bÝ X n(w 0 n X n 0 n"1
bn

w

% & % & % %' P b *b , . . . , b P b *b , . . . , b ( B 2Ý ÝY n(w 0 n X n 0 n"1 n(r
b r#1n

w

% &Ž % & . % %' P b *b , . . . , b P b *b , . . . , b (2 ( B 2Ý ÝY n(w 0 n Y n 0 n"1 n n(r
b r#1n

w

% & % % % %'P b *b , . . . , b ( B 2 ( B 2ÝY n(w 0 n"1 n n(r
r#1

Ž .the first inequality is by the induction hypothesis . Exchanging the roles of X and Y completes
the proof. Q.E.D.

% % ŽWe proceed now with the proof of Step M4. From t to t(w there are N w transitions at each
.period, think of the players moving one after the other, in some arbitrary order . Step M3 im-

plies that each transition probability for the s-process differs from the corresponding one forˆ
Ž . % % % % Ž .the s-process by at most O w,t , which yields, by the Lemma, a total difference of N w S O w,t

Ž 2 .#O w ,t . Q.E.D.

! PROOF OF STEP M5: Immediate by Step M4. Q.E.D.

! i"Ž .PROOF OF STEP M6: Given h , the random variables s are independent over theˆt t(w w
different players i" in N; indeed, the transition probabilities are all determined at time t, and the
players randomize independently. Hence:

% Ž "i . & % "i " i & % i &P s # j, s *h #P s #s *h P s # j *h ,ˆ ˆ ˆt(w t t(w t t(w t

implying that

"i " i " i i iŽ . % & Ž . % & % &- j, s #P s #s *h / k , j P s #k *h "P s # j *h .ˆ ˆ ˆ ˆÝt , w t(w t t t(w t t(w t
ik$S
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% i & iNow P s # j *h is the probability of reaching j in w steps starting from s , using the transitiont̂(w t t
% i & Ž i . w Ž .wprobability matrix / . Therefore P s # j *h is the s , j -element of the wth power / ' /ˆt t(w t t t t

% w &Ž i .of / , i.e., / s , j . Hencet t t

"i " i " i w i w iŽ . % & Ž . % &Ž . % &Ž .- j, s #P s #s *h / k , j / s , k " / s , jˆ ˆ Ýt , w t(w t t t t t t
ik$S

% "i " i & %% w( 1 &Ž i . % w &Ž i .&#P s #s *h / s , j " / s , j ,t̂(w t t t t t

completing the proof. Q.E.D.

! Ž Ž .PROOF OF STEP M7: It follows from M6 using the following Lemma recall that / j, j $0 fort
i.all j$S .

LEMMA: Let / be an m&m stochastic matrix with all of its diagonal entries positi!e. Then
% w( 1 w &Ž . Ž "1 ,2 ./ "/ j, k #O w for all j, k#1, . . . , m.

37 Ž .PROOF: Let 2$0 be a lower bound on all the diagonal entries of / , i.e., 2!min / j, j . Wej
Ž .can then write /#2I( 1"2 3, where 3 is also a stochastic matrix. Now

w
rww w"r rŽ ./ # 2 1"2 3 ,Ý ž /r

r#0

and similarly for / w( 1. Subtracting yields
w(1

rww( 1 w w"r rŽ ./ "/ # 4 2 1"2 3 ,Ý r ž /r
r#0

Ž . Ž . Ž .Ž .where 4 !2 w(1 , w(1" r "1. Now 4 $0 if r$q! w(1 1"2 , and 4 '0 if r'q;r r r
rŽ .together with 0'3 j, k '1, we get

r rw ww" r w(1 w w"rŽ . % &Ž . Ž .4 2 1"2 ' / "/ j, k ' 4 2 1"2 .Ý Ýr rž / ž /r r
r'q r$q

Consider the left-most sum. It equals

r rw(1 ww( 1"r w"rŽ . Ž . Ž . Ž .2 1"2 " 2 1"2 #G q "G q ,Ý Ý w( 1 wž / ž /r r
r'q r'q

Ž .where G ) denotes the cumulative distribution function of a sum of n independent Bernoullin
random variables, each one having the value 0 with probability 2 and the value 1 with probability

Ž1"2. Using the normal approximation yields 5 denotes the standard normal cumulative distribu-
.tion function :

1 1
Ž . Ž . Ž . Ž .G q "G q #5 x "5 y (O (O ,w( 1 w ž /ž / ''Ž . ww(1

where
Ž .Ž . Ž .q" w(1 1"2 q"w 1"2

x! and y! ;
Ž . Ž . Ž .' 'w(1 2 1"2 w2 1"2

37 If / were a strictly positive matrix, then / w( 1 "/ w !0 would be a standard result, because
then / w would converge to the invariant matrix. However, we know only that the diagonal
elements are positive. This implies that, if w is large, then with high probability there will be a
positive fraction of periods when the process does not move. But this number is random, so the

Žprobabilities of going from j to k in w steps or in w(1 steps should be almost the same since it is
.like having r ‘‘stay put’’ transitions versus r(1 .
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ŽŽ ."1 ,2 . Ž "1 ,2 . Žthe two error terms O w(1 and O w are given by the Berry-Esseen Theorem see´
Ž .. Ž "1 ,2 .Feller 1965, Theorem XVI.5.1 . By definition of q we have x#0 and y#O w . The

Ž . Ž . Ž . Ž "1 ,2 .derivative of 5 is bounded, so 5 x "5 y #O x"y #O w . Altogether, the left-most sum
Ž "1 ,2 .is O w . A similar computation applies to the right-most sum. Q.E.D.

! "i 2 "1,2Ž . Ž .PROOF OF STEP M8: Steps M5 and M7 imply - j, s #O w ,t(w . The formula oft, w
Step M2 then yields

w2
"1,2% &R )E A *h #O (w .t t(w t ž /t

Ž ! , Ž ,(1. .Adding over w#1, 2, . . . , ! note that Ý w #O ! for ,#"1 and substituting into Stepw# 1
Ž .M1 i gives the result. Q.E.D.

! PROOF OF STEP M9: We use the inequality of Step M8 for t# t and ! # t " t . Becausen n(1 n
,Ž .5,3 - , 5,3 - Ž 2,3. 3 Ž 2 . 1,2 Ž 5,3(1,3. Ž 2 .! # n(1 " n #O n , we have ! #O n and t! #O n #O n , and the

result follows. Q.E.D.

! Ž Ž ..PROOF OF STEP M10: We use the following result see Loeve 1978, Theorem 32.1.E :`

Ž .THEOREM Strong Law of Large Numbers for Dependent Random Variables : Let X be an
sequence of random !ariables and b a sequence of real numbers increasing to *, such that the seriesn

* Ž . 2Ý var X ,b con!erges. Thenn# 1 n n

n1 "% % &&X "E X *X , . . . , X 0 a.s.Ý 6 6 1 6"1 n!*bn 6#1

2 2 2 Ž .We take b ! t , and X !b 0 "b 0 # t 0 " t 0 . By Step M1 ii we haven n n n t n"1 t n t n"1 tn n"1 n n"1

% % Ž 2 . Ž 7,3. Ž . 2 Ž 14,3. 20,3 Ž 2 .X ' O t ! (! # O n , thus Ý var x ,b #Ý O n ,n #Ý O 1,n ) *. Next,n n n n n n n n n
Step M9 implies

Ž . % & "1 0,3 2 Ž "1 0,3 3 . Ž "1 ,3 .1,b E X *X , . . . , X 'O n 6 #O n n #O n !0.Ý Ýn 6 1 6"1 ž /
6'n 6'n

Ž .Applying the Theorem above thus yields that 0 , which is nonnegative and equals 1,b Ý X ,t n 6 ' n 6n
must converge to 0 a.s. Q.E.D.

! 2% Ž .&PROOF OF STEP M11: Since 0 #Ý R j, k , the previous Step M10 implies thatt j# k tn n

Ž . Ž . Ž . Ž "1 .R j, k !0 a.s. n!*, for all j#k. When t ' t' t , we have R j, k "R j, k #O n byt n n(1 t tn n
Ž .the inequality of Step M3, so R j, k !0 a.s. t!*. Q.E.D.t
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Uncoupled Dynamics Do Not Lead to Nash Equilibrium 

By SERGIU HART AND ANDREU MAS-COLELL* 

It is notoriously difficult to formulate sensi- 
ble adaptive dynamics that guarantee conver- 
gence to Nash equilibrium. In fact, short of 
variants of exhaustive search (deterministic or 
stochastic), there are no general results; of 
course, there are many important, interesting 
and well-studied particular cases. See the books 
of J6rgen W. Weibull (1995), Fernando Vega- 
Redondo (1996), Larry Samuelson (1997), 
Drew Fudenberg and David K. Levine (1998), 
Josef Hofbauer and Karl Sigmund (1998), H. 
Peyton Young (1998), and the discussion in 
Section IV below. 

Here we provide a simple answer to the ques- 
tion: Why is that so? Our answer is that the lack 
of a general result is an intrinsic consequence of 
the natural requirement that dynamics of play be 
"uncoupled" among the players, that is, the ad- 
justment of a player's strategy does not depend 
on the payoff functions (or utility functions) of 
the other players (it may depend on the other 
players' strategies, as well as on the payoff 
function of the player himself). This is a basic 
informational condition for dynamics of the 
"adaptive" or "behavioral" type. 

It is important to emphasize that, unlike the 
existing literature (see Section IV), we make no 
"rationality" assumptions: our dynamics are not 
best-reply dynamics, or better-reply, or payoff- 
improving, or monotonic, and so on. What we 
show is that the impossibility result is due only 

* Hart: Center for Rationality and Interactive Decision 
Theory, Department of Mathematics, and Department of 
Economics, The Hebrew University of Jerusalem, Feldman 
Building, Givat-Ram, 91904 Jerusalem, Israel (e-mail: 
hart@huji.ac.il; URL: (http://www.ma.huji.ac.il/'hart)); 
Mas-Colell: Department of Economics and Business, Uni- 
versitat Pompeu Fabra, Ramon Trias Fargas 25-27, 08005 
Barcelona, Spain (e-mail: mcolell@upf.es). The research is 
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Sciences and Humanities, the Spanish Ministry of Educa- 
tion, the Generalitat de Catalunya, and the EU-TMR Re- 
search Network. We thank Robert J. Aumann, Yaacov 
Bergman, Vincent Crawford, Josef Hofbauer, Piero La 
Mura, Eric Maskin, Motty Perry, Alexander Vasin, Bob 
Wilson, and the referees for their useful comments. 

to an "informational" requirement-that the dy- 
namics be uncoupled. 

I. The Model 

The setting is that of games in strategic (or 
normal) form. Such a game F is given by a finite 
set of players N, and, for each player i E N, a 
strategy set S' (not necessarily finite) and a 
payoff function' u1: HEN Sj -> R. 

We examine differential dynamical systems 
defined on a convex domain X, which will be 
either HieN Si or2 IieN A(S'), and are of the 
form 

)(t) = F(x(t); r), 

or x = F(x; F) for short. We also write this as 
xi = Fi(x; F) for all i, where x = (xi)iEN and3 
F = (Fi)iEN. 

From now on we keep N and (S1)ieN fixed, 
and identify a game F with its N-tuple of payoff 
functions (ui)ieN, and a family of games with a 
set 'U of such N-tuples; the dynamics are thus 

(1) xi = F'(x; (uJ)jEN) for all i E N. 

We consider families of games U where every 
game F E U has a single Nash equilibrium 
x(r). Such families are the most likely to allow 
for well-behaved dynamics. For example, the 
dynamic x = x(r) - x will guarantee conver- 
gence to the Nash equilibrium starting from any 

1 R denotes the real line. 
2 We write A(A) for the set of probability measures 

over A. 
3 For a well-studied example (see for instance Hofbauer 

and Sigmund, 1998), consider the class of "fictitious play"- 
like dynamics: the strategy q'(t) played by i at time t is 
some sort of "good reply" to the past play of the other 
players j, i.e., to the time average xJ(t) of qj(T) for T - t; then 
(after rescaling the time axis) x1 = q' - x- Gi(x; F) - x' 
Fi(x; F). 

1830 
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initial condition.4 Note, however, that in this dy- 
namic X depends on jx(F), which, in turn, depends 
on all the components of the game F, in particular 
on uJ for j 0 i. This motivates our next definition. 

We call a dynamical system F(x; F) (defined 
for r in a family of games U) uncoupled if, for 
every player i E N, the function F' does not 
depend on uJ for j ] i; i.e., 

(2) x' = F'(x; ui) for all i E N 

[compare with (1)]. Thus the change in player i's 
strategy can be a function of the current N-tuple of 
strategies x and i's payoff function u' only.5 In 
other words, if the payoff function of player i is 
identical in two games in the family, then at each 
x his strategy x' will change in the same way.6 

If, given a family U with the single-Nash- 
equilibrium property, the dynamical system al- 
ways converges to the unique Nash equilibrium 
of the game for any game r E u1-i.e., if 
F(x(F); F) = 0 and limt,,x(t) = x(F) for any 
solution x(t) (with any initial condition)-then 
we will call F a Nash-convergent dynamic for 
U. To facilitate the analysis, we always restrict 
ourselves to C1 functions F with the additional 
property that at the (unique) rest point x(F) the 
Jacobian matrix J of F( ; F) is hyperbolic and 
(asymptotically) stable-i.e., all eigenvalues of 
J have negative real parts. 

We will show that: 

There exist no uncoupled dynamics which 
guarantee Nash convergence. 

Indeed, in the next two sections we present two 
simple families of games (each game having a single 
Nash equilibrium), for which uncoupledness and 
Nash convergence are mutually incompatible. 

More precisely, in each of the two cases we 
exhibit a game Fo and show that:7 

4 The same applies to various generalized Newton meth- 
ods and fixed-point-convergent dynamics. 5 It may depend on the function u'(-), not just on the 
current payoffs u'(x). 

6 What the other players do (i.e., x-i) is much easier to 
observe than why they do it (i.e., their utility functions u-i). 

7 An E-neighborhood of a game Fr = (u)iEN consists of 
all games F = (u')i, satisfying lu'(s) - uo(s)I < e for all 
s E i,EN Si and all i E N. 

THEOREM 1: Let U be a family of games 
containing a neighborhood of the game Fo. 
Then every uncoupled dynamic for U is not 
Nash-convergent. 

Thus an arbitrarily small neighborhood of Fo 
is sufficient for the impossibility result (of 
course, nonexistence for a family U implies 
nonexistence for any larger family U' D U). 

II. An Example with a Continuum of Strategies 

Take N = {1, 2) and S1 = S2 = D, where 
D := {z = (z1, Z2) E R2 : \z11 ? 1} is the unit 
disk. Let ) : D -> D be a continuous function 
that satisfies: 

* )(z) = 2z for z in a neighborhood of 0; and 
* +(+(z)) : z for all z : 0. 

Such a function clearly exists; for instance, 
let us put )(z) = 2z for all lIzll - 13, define 4 
on the circle lizil = 1 to be a rotation by, say, 
r/4, and interpolate linearly on rays between 

|l zl = 1/3 and ||Izl = 1. 
Define the game Fo with payoff functions uo 

and u2 given by8 

uo(xi, xi) := -|' - (i)ll2 for all x, xi E D. 

Fo has a unique Nash equilibrium9 x = (0, 0). 
We embed Fo in the family Uo consisting of 

all games F (ul, u2) where, for each i = 1, 2, 
we have ui(xi, x) = -x - (xJ)ll2, with 

: D -> D a continuous function, such that the 
equation e((j(x')) = xi has a unique solution xi. 
Then x = (x1, x2) is the unique Nash equilib- 
rium of the game'0 F. 

We will now prove that every uncoupled 
dynamic for 'U, is not Nash-convergent. This 
proof contains the essence of our argument, and 

8 We use j := 3 - i throughout this section. In the game 
ro, each player i wants to choose xi so as to match as closely 
as possible a function of the other player's choice, namely, 
4<(x). 

9 x is a pure Nash equilibrium if and only if x1 = (r2) 
and x2 = (1), or xi = 4(4(xi)) for i = 1, 2. There are no 
mixed-strategy equilibria since the best reply of i to any 
mixed strategy of j is always unique and pure. 

10 Moreover x is a strict equilibrium. 
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the technical modifications needed for obtaining 
Theorem 1 are relegated to the Appendix. Let F 
thus be, by contradiction, a dynamic for the 
family 'Uo which is uncoupled and Nash-con- 
vergent. The dynamic can thus be written: x' = 
F'(x', xj; u') for i = 1, 2. 

The following key lemma uses uncoupled- 
ness repeatedly. 

LEMMA 2: Assume that y' is the unique ui- 
best-reply of i to a given yJ, i.e., ul(y1, yO) > 
ui(x', y) for all x' f y'. Then F'(yi, y; u') = 0, 
and the eigenvalues of the 2 X 2 Jacobian 
matrix11 J = (F[k(y', y; u')/xl)k,l=1,2 have 
negative real parts. 

PROOF: 
Let rF be the game (u', uj) with u(xi, xi) := 

-||xI - yj12 (i.e., ~j is the constant function 
~J(z) -- y); then (y', yj) is its unique Nash 
equilibrium, and thus Fi(yi, yJ; u') = 0. Apply 
this to player j, to get Fx(x', yJ; uJ) = 0 for all x' 
(since yJ is the unique uJ-best-reply to any x1). 
Hence aF{(x', yi; uJ)lax = 0 for k, I = 1, 2. The 
4 X 4 Jacobian matrix J of F( *, *; 1l) at (y', 
y') is therefore of the form 

j- i K] J 0 L 
The eigenvalues of J-which all have negative 
real parts by assumption-consist of the eigen- 
values of J' together with the eigenvalues of L, 
and the result follows. O 

Putf'(x) := F(x; uo); Lemma 2 implies that 
the eigenvalues of the 2 X 2 Jacobian matrix 
J := (Wfk(0, O)/a)k,l=1,2 have negative real 
parts. Again by Lemma 2, f'(4(xJ), xJ) = 0 for 
all xj, and therefore in particular f'(2xJ, xJ) = 0 
for all xJ in a neighborhood of 0. Differentiating 
and then evaluating at x = (0, 0) gives 

2af (0, o)/Iax + af/(o, o)/ax = o 

for all k, 1 = 1, 2. 

1 Subscripts denote coordinates: xi = (x'i, x2) and F' = 
(F', F2). 

Therefore the 4 x 4 Jacobian matrix J of the 
system (f, f2) at x = (0, 0) is 

r i1 -2/' 
J=- -22 j2 ] 

LEMMA 3: If the eigenvalues of J1 and J2 
have negative real parts, then J has at least one 
eigenvalue with positive real part. 

PROOF: 
The coefficient a3 of A in the characteristic 

polynomial det(J - A) of J equals the negative 
of the sum of the four 3 X 3 principal minors; 
a straightforward computation shows that 

a3 = 3 det(J')trace(J2) + 3 det(J2)trace(J'). 

But det(Ji) > 0 and trace(J') < 0 (since the 
eigenvalues of J' have negative real parts), so 
that a3 < 0. 

Let A1, A2, A3, A4 be the eigenvalues of J. 
Then 

A1A2A3 + AlA2A4 + A1A3A4 + A2A3A4 

= -a3 > 0 

from which it follows that at least one Ar must 
have positive real part. O 

This shows that the unique Nash equilibrium 
x = (0, 0) is unstable for F( ; Fo)-a contra- 
diction which establishes our claim. 

For a suggestive illustration,12 see Figure 
1, which is drawn for x in a neighborhood of (0, 0) 
where (xi) = 2x. In the region 1||1x/2 < Ilx 1l < 
211x211 the dynamic leads "away" from (0, 0) (the 
arrows show that, for x' fixed, the dynamic on x 
must converge to x1 = 2xi-see Lemma 2). 

III. An Example with Finitely Many Strategies 

If the games have a finite number of strate- 
gies (i.e., if the S' are finite), then the state space 
for the dynamics is the space of N-tuples of 
mixed strategies HiEN A(S'). 

12 The actual dynamic is 4-dimensional and may be quite 
complex. 
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11x211 

FIGURE 1. THE DYNAMIC FOR THE GAME Fo OF SECTION II 
AROUND (0, 0) 

Consider a family 'Uo of three-player games 
where each player has two strategies, and the 
payoffs are: 

0, 0, 0 a, 1,0 0,a2, a, , 1 

1,0, a3 0, , a3 1, a2,0 0,0,0 

where all the a1 are close to 1 (say, 1 - E < a1 < 
1 + s for some small s > 0), and, as usual, 
player 1 chooses the row, player 2 the column 
and player 3 the matrix.13 Let Fr be the game 
with a1 = 1 for all i; this game has been intro- 
duced by James Jordan (1993). 

Denote by xl, x2, x3 E [0, 1] the probability 
of the top row, left column, and left matrix, 
respectively. For every game in the family 'Uo 
there is a unique Nash equilibrium:14 x (rI) = 
ai-1/(ai-l + 1). In particular, for Jordan's 
game xo - x(F) = (1/2, 1/2, 1/2). 

Let F be, by way of contradiction, an uncoupled 

13 Each player i wants to mismatch the next player i + 1, 
regardless of what player i - 1 does. (Of course, i + 1 is 
always taken modulo 3.) 

14 In equilibrium: if i plays pure, then i - 1 plays pure, 
so all players play pure-but there is no pure equilibrium; 
if i plays completely mixed, then a'(1 - x+ l) = xi+ 1 

Nash-convergent dynamic 'U. For the game Fo 
(o)i= 1,2,3 we denotef(x, x2, x3) := F(x, x2, x3; 
uo); let J be the 3 X 3 Jacobian matrix off at xo. 

For any y' (close to 1/2), the unique equilib- 
rium of the game F1 = (u2, u2, u3) in L/o with u3 
given by a3 y /(1 - ) is (yl, 1/2, 1/2), and 
so Fl(y1, 1/2, 1/2; F1) = 0. This holds therefore 
also for Fr since the dynamic is uncoupled: 
f'(y', 1/2, 1/2) = 0 for all yl close to 1/2. 
Hence afl(xo)l/x' = 0. The same applies to the 
other two players, and we conclude that the 
diagonal-and thus the trace-of the Jacobian 
matrix J vanishes. Together with hyperbolicity 
[in fact, det(J) : 0 suffices here], this implies 
the existence of an eigenvalue with positive real 
part,'5 thus establishing our contradiction- 
which proves Theorem 1 in this case. 

We put on record that the uncoupledness of 
the dynamic implies additional structure on J. 
Indeed, we have fl(x', 1/2, x3) = 0 for all x1 
and x3 close to 1/2 [since (xl, 1/2, x3) is the 
unique Nash equilibrium when a' = 1-as in 
Fo-and a2 = x3/(1 - x3), a3 = xl/(1 - xl)]. 
Therefore fl(xo)/ x3 = 0 too, and so J is of the 
form 

-0 c 0- 
J= 0 0 d 

e 0 0 

for some reall6 c, d, e. 
We conclude by observing that the specific- 

ities of the example have played very little role 
in the discussion. In particular, the property that 
the trace of the Jacobian matrix is null, or thatfi 
vanishes over a linear subspace of co-dimension 
1, which is determined from the payoff function 
of player i only, will be true for any uncoupled 
dynamics at the equilibrium of a game with a 
completely mixed Nash equilibrium-provided, 
of course, that the game is embedded in an 
appropriate family of games. 

15 Indeed: otherwise the real parts of all eigenvalues are 
0. The dimension being odd implies that there must be a real 
eigenvalue. Therefore 0 is an eigenvalue-and the determi- 
nant vanishes. 

16 If cde : 0 there is an eigenvalue with positive part, 
and if cde = 0 then 0 is the only eigenvalue. 
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IV. Discussion 

(a) There exist uncoupled dynamics converg- 
ing to correlated equilibria17-see Dean 
Foster and Rakesh V. Vohra (1997), Fuden- 
berg and Levine (1999), Hart and Mas- 
Colell (2000),18 and Hart and Mas-Colell 
(2003). It is thus interesting that Nash equi- 
librium, a notion that does not predicate 
coordinated behavior, cannot be guaranteed 
to be reached in an uncoupled way, while 
correlated equilibrium, a notion based on 
coordination, can.19 

(b) In a general economic equilibrium frame- 
work, the parallel of Nash equilibrium is 
Walrasian (competitive) equilibrium. It is 
again well known that there are no dynam- 
ics that guarantee the general convergence 
of prices to equilibrium prices if the dynamic 
has to satisfy natural uncoupledness-like 
conditions, for example, the nondepen- 
dence of the adjustment of the price of one 
commodity on the conditions of the markets 
for other commodities (see Donald G. Saari 
and Carl P. Simon, 1978). 

(c) In a mechanism-design framework, the 
counterpart of the uncoupledness condition 
is Leonid Hurwicz's "privacy-preserving" 
or "decentralized" condition-see Hurwicz 
(1986). 

(d) There are various results in the literature, 
starting with Lloyd S. Shapley (1964, Sec. 
5), showing that certain classes of dynamics 
cannot be Nash-convergent. These dynam- 
ics assume that the players adjust to the 
current state x(t) in a way that is, roughly 
speaking, payoff-improving; this includes 
fictitious play, best-reply dynamics, better- 
reply dynamics, monotonic dynamics, ad- 
justment dynamics, replicator dynamics, 
and so on; see Vincent P. Crawford (1985), 
Jordan (1993), Andrea Gaunesdorfer and 

17 Of course, these dynamics are defined on the appro- 
priate state space of joint distributions A(IiN Si), i.e., 
probability vectors on N-tuples of (pure) strategies. 

18 In fact, the notion of "decoupling" appears in Section 
4 (i) there. 

19 Cum grano salis this may be called the "Coordination 
Conservation Law": there must be some coordination either 
in the equilibrium concept or in the dynamic. 

Hofbauer (1995), Foster and Young (1998, 
2001), and Hofbauer and Sigmund (1998, 
Theorem 8.6.1). All these dynamics are 
necessarily uncoupled (since a player's 
"good reply" to x(t) depends only on his 
own payoff function). Our result shows that 
what underlies such impossibility results is 
not necessarily the rationality-type assump- 
tions on the behavior of the players-but 
rather the informational requirement of 
uncoupledness. 

(e) In a two-population evolutionary context, 
Alexander Vasin (1999) shows that dynam- 
ics that depend only on the vector of pay- 
offs of each pure strategy against the 
current state-a special class of uncoupled 
dynamics-cannot be Nash-convergent. 

(f) There exist uncoupled dynamics that are 
guaranteed to converge to (the set of) Nash 
equilibria for specialfamilies of games, like 
two-person zero-sum games, two-person 
potential games, dominance-solvable games, 
and others;20 for some recent work see 
Hofbauer and William H. Sandholm (2002) 
and Hart and Mas-Colell (2003). 

(g) There exist uncoupled dynamics that are 
most of the time close to Nash equilibria, 
but are not Nash-convergent (they exit in- 
finitely often any neighborhood of Nash 
equilibria); see Foster and Young (2002). 

(h) Sufficient epistemic conditions for Nash 
equilibrium-see Robert J. Aumann and 
Adam Brandenburger (1995, Preliminary 
Observation, p. 1161)-are for each player 
i to know the N-tuple of strategies x and his 
own payoff function ui. But that is precisely 
the information a player uses in an uncou- 
pled dynamic-which we have shown not 
to yield Nash equilibrium. This points out 
the difference between the static and the 
dynamic frameworks: converging to equi- 
librium is a more stringent requirement than 
being in equilibrium. 

(i) By their nature, differential equations allow 
strategies to be conditioned only on the 
limited information of the past captured by 

20 A special family of games may be thought of as giving 
information on the other players' payoff function (e.g., in 
two-person zero-sum games and potential games, u' of one 
player determines uj of the other player). 
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the state variable. It may thus be of interest 
to investigate the topic of this paper in more 
general settings. 

APPENDIX 

We show here how to modify the argument of 
Section II in order to prove Theorem 1. Con- 
sider a family of games U' that is a neighbor- 
hood of Fo, and thus is certain to contain only 
those games in 'U1 that are close to Fr. The 
proof of Lemma 2 uses payoff functions of the 
form uJ(xi, x) = -Ixj - J112 that do not depend 
on the other player's strategy x' (i.e., e is the 
constant function e(z) y'). Since the proof in 
Section II needs the result of Lemma 2 only for 
y' in a neighborhood of 0, we will replace the 
above constant function e with a function that is 
constant in a neighborhood of the origin and is 
close to >. 

We will thus construct for each a E D with 
Ilall < E a function Ca: D -- D such that: (1) 
I||la - (l||1 CE for some constant C > 0; (2) 
4la(Z) = a for all l||z|| 2E; (3) )(P(1a(Z)) = Z if 
and only if z = (a) = 2a; and (4) qib(a(Z)) = 
z if and only if z = ,fb(a) = b. The games 
corresponding to ((, iiy) and to (<fi, ?,y), for 
I.ll < E/2 and x' close to 2yJ, are therefore in 
Uo [by (3) and (4)], are close to Fo [by (1)], and 
we can use them to obtain the result of Lemma 
2 [by (2)]. 

The q functions may be constructed as fol- 
lows: (i) a(z) := a for |z| zll 2s; (ii) ia(Z):= 
0 for |Izll = 3s; (iii) la(Z) is a rotation of +b(z) by 
the angle s for I|lzl > 4e; and (iv) interpolate 
linearly on rays in each one of the two regions 
2e < | zll < 3e and 38 < ilzil < 4e. 

It can be checked that conditions (1)-(4) 
above are indeed satisfied.21 

21 (1) and (2) are immediate. For (3), let z = ((w) and 
w = lak(z). If Ilzil - 3E, then w = aa for some a E [0, 1], 
therefore I||w| < E and z = +(w) = 2w, so in fact 1||1z < 2E 
and w = a. If lizil > 3E, then, denoting by O(x) the angle of 
x and recalling that 4 rotates by an angle between 0 and 7r/4, 
we have 0(z) - 0(w) = O((b(w)) - O(w) E [0, sr/4], 
whereas 0(w) - 0(z) = O(a(z)) - O(z) = O(4(z)) + e - 
0(z) E [E, 7r/4 + E], a contradiction. (4) is proven in a 
similar way. 
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