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Calibrationis a concept that tries to formalize a notion of quality farefoasters. For example,
suppose a weatherman predicts each day whether the it imillaabe sunny. Typically forecasters
will predict such events in terms of probabilities, i.e.h#8Fe is a 30% chance of rain.” Given only
the outcome that day, it is impossible to judge the qualityswéh a forecast. However, if we
considerall days on which a forecaster said the probability of rain wéts it is reasonable to
expect that the fraction of such days on which it rained ist#yxa%. This is precisely the notion
of calibration.

In this lecture we first define a notion of calibration thatppeopriate for the study of games,
and then prove that calibration is essentially a genett@izaf internal regret minimization. For-
mally, we will show that playing a best response to a caldddbrecast of the opponent is an
internal regret minimizing strategy; and that using anrimaé regret minimizing algorithm, one
can easily build a calibrated forecaster. Our presentasitwased primarily on the corresponding
paper of Foster and Vohra [2].

Throughout the lecture we consider a finite two-player ganiesre each playerhas a finite
pure action setl;; letA =[], A;,and letd_; = H#i A;. We leta; denote a pure action for player
i, and lets; € A(A;) denote a mixed action for playéer We will typically view s; as a vector in
R4, with s;(a;) equal to the probability that playeplaces onu;. We letIl;(a) denote the payoff
to playeri when the composite pure action vectorisand by an abuse of notation alsoI&fs)
denote the expected payoff to playevhen the composite mixed action vectosis

The game is played repeatedly by the players. WaTet= (a, ..., a” ') denote the history
up to timeT'. Theinternal regretof player: of actiona; against action, after historyh? is:

IR azv z ZI{CL = al (az’ a’—i) - Hi(ai’ at—z)> :

We letq? € A(A; x A,) denote the joint empirical distribution of play play up t;m&7" — 1:
q" (a1, az) ZI{al ay,ab = as}.

1 Calibration

We assume that, at each timeplayer 1 makes #orecastf!, € A(A,) of the mixed action that
player 2 will play. We definéV (s, T') as the number of times that player 1 has forecast the
first T' time steps:

N(s2,T Zz{fu = Sa}.



We definep? (ay; 5,) as the fraction of time that player 2 played actiofy among those time
periods where player 1 forecast up to time7" — 1:

o Z{fly = 52,0} = a5}
o THft = 2}
(Define pT'(as; s5) = 0 if the denominator in the preceding expression is zero.) yetisat the

forecaster used by player 1dslibratedif the following limit holds almost surely, regardless of
the (possibly history-dependent) strategy used by player 2

PlT(a2; Sp) =

T—o0 T
s2€A(s2)

lim Z |p1 (az; s2) — s2(az)| <M> =0, foralla, € A,. 1)

(Since player 1 has made only finitely many forecasts up te Tiirthe sum is well defined for all
finite T.) Thus we look at the limiting fraction of time that player s as, whens, is forecast.
Informally, on this subsequence of time periods, the foactf time that player 2 plays, must
approactssy(ay). The sum weighted by (s9, 7') /T ensures uniformity of calibration in the limit;
i.e., the calibration error must approach zero uniformlgrahe forecasts chosen by player 1. (We
note that many other, typically weaker, formulations oflwa@tion are often used in the literature;
we refer the reader to [1] for details.)

2 Calibration ImpliesInternal Regret Minimization

We start with the following simple theorem: best responsesdalibrated forecaster will minimize
internal regret.

Theorem 1 Suppose that player 1 uses a calibrated forecast of playeplly, and at each time
t plays a pure best response to this forecast; assume thaaebroken according to a station-
ary and deterministic tiebreaking rule. Then the resultstigategy for player 1 is internal regret
minimizing.

Proof. The proof idea is to note that calibration is a form of “int@irnegret minimization in
forecast space.” We will proceed by first grouping togethietha forecasts that would lead to a
given mixed actiors; played by player 1, and then use this interpretation of catibn to establish
internal regret minimization.

Formally, givena, € Ay, let Fi(a;) C A(A;) be the set of mixed actions of player 2 for
which a; is a best response (under the stationary, deterministicet@king rule that has been
chosen). Note that), ., Fi(41) = A(A,). Further, note tha#i(a;) C BR;'(a1), where
BR; : A(A2) — A(A,;) is the best response map of player 1.



We start with the following calculation:
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The first equality follows by definition of the joint empiriadistribution. The second equality uses

the fact that player 1 plays if and only if the forecast lies it (a1 ). The fourth equality uses the
definitions ofp? and V.

In the last equality, notice that the second summation agesgeto zero almost surely d5—
0o, by the assumption of calibrated forecasting. Thus we have:
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whereer is an error term that approaches zerd/as> oc. The first equality is the definition of
internal regret. The second equality follows by rewritihg first expression. The first inequality
follows by our expression fog” in terms of calibration error. The remaining equalitieddol



by rearranging terms. Finally, the last inequality follogisce for everyf € Fi(a;), a; is a best
response for player 1; thu$(a), f) — II(a, f) < 0.
From the preceding we conclude that forall o, there holds almost surely:

1
lim sup ?]Rl(hT; a,ay) <0

— )
T—o0

as required. O

Remarks:

1. The original paper of Foster and Vohra actually estabighat if all players use the sug-
gested algorithm (via a calibrated forecaster), then ptaywerges to the set of correlated
equilibria. Of course, this is a trivial consequence of thecpding result, since play con-
verges to the set of correlated equilibria if all players undernal regret minimizing algo-
rithms.

2. Note that best response to the calibrated forecasteraeradf “fictitious play.” On other
hand, note that the marginal empirical distribution of tippanent need not be a calibrated
forecast, so standard fictitious play is (obviously) noilrakted. (We know this already,
since standard fictitious play need not even minimize eglaeygret.) More generally, it is
not hard to show that no deterministic forecaster can bereaéd.

3 Internal Regret Minimization impliese-Calibration

We now show that internal regret minimizing algorithms carubed to build calibrated forecasters,
establishing a form of equivalence between the two condégdten together with the last section).
For simplicity, we focus attention on the case where playeaonly two actions availablet, =
{0,1}. (This is also called the problem bfnary sequence prediction In addition, rather than
asking for exact calibration, we only establish the wealaion of c-calibration; this is not an
enormous limitation, as it is possible to show (through apliagtion of the doubling trick) that
the family ofe-calibrated forecasters we build can be used to build aeicalibrated forecaster.

Since we are only predicting binary sequences, we integdicecast as the probability that the
next play of player 2 will bd; thus a forecast is a real number|in1]. Using notation analogous
to the preceding section, defipé(p) and N (p, T') as follows:

_ ZtT:_ol agf{fﬁ = p}
T = p)

Givene > 0, we seek a forecaster thatigalibrated, i.e., that satisfies the following almost §uyre
regardless of the (possibly history-dependent) stratéglayer 2:

lim sup > i) =l (M) <e

70 pefo,]

N(p,T) = il{ffz =} pi(p)



Again, the sum is well defined for every finife

Our main idea is taliscretizethe forecast space. Fix a positive integerand suppose that
forecasts are chosen only from the set= {0,1/k,2/k,...,(k —1)/k,1}. We consider a “fore-
casting game”, i.e., a game where the loss to player 1 whereedstf € F'is made and player 2
playsa € {0, 1} is:

Uf,a)=(a—f)"

(Equivalently, the payoff to player 1 is¢(f,a).) Player 1's goal in this game is to minimize his
loss. We will show that if player 1 uses an internal regretimining algorithm in the forecasting
game, and: is large enough, then the resulting forecastercslibrated.

This approach yields the following theorem.

Theorem 2 Given a strategy of player 2, I¢f, denote the forecast (if") chosen at time by an
internal regret minimizing algorithm in the forecastingrga defined above. Then regardless of the
strategy of player 2, the resulting sequence of forec@fts} is calibrated.

Proof. We first note that it suffices to show:

N(p, T
lim sup Z ol (p (%) <

T—o0 pE[01]

This follows by using Jensen’s inequality and the definitibcalibration.

Let w! denote the mixed action ovéf played by player 1 at timein the forecasting game,
according to the internal regret minimizing algorithm. ¢Bl¢hat this isa mixed action over fore-
castd) Forp € F, define:

Zt 0“’1()

We start by showing that, in an appropriate sense, actugalgala be replaced by expectations.
Using a standard argument (via the Azuma-Hoeffding inaguahd the Borel-Cantelli Lemma),
it follows that for allp € F' (almost surely):

71 (p) =
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From these two limits, it follows also that:

Sl - o2 () - o) - (Zf Zimy 1i0) >>| o

lim
T—o00




Thus it suffices to show that:

1izryjotip2(ﬁf(p) - p)? <Zt OTwl( )> <e.

peF

Note that:

efn () )] - ) (- (5-2))

(The expectation is only with respect to player 1's rand@tiim.)
Noting that(al, — i/k)? — (ab — j/k)* = (2d% — i/k — j/k)(j/k — i/k), we have:

slin ()] e =i (o) (o))
S (1) (7 (- 7)
ONCOICIOR S
(S ) (-6 )-1)

Minimizing the right hand side over, note that we can always choogg: to be within at most

1/k of pT (i/k), sinceF is al/k-discretization of0, 1]. Thus there exists at least one choicg of
for which we have:

(Zt 0 ;%(’l/’f)) (p{ (%) _ %)2 %]E [[Rl (hT ; ‘;)1 +ki.

If we sum overi on the left hand side and take the sup aven the right hand side, we obtain:

S 7w - p)? (Zt Zim ui0) )> < (4 1) sup ZBIR(Tip.p)]) + (64 DR,

peF pp'eF

sincei ranges fron? to k. Choosingk sufficiently large (in particular, so thét + 1)/k? < &),
and takingl’ — oo yields the desired result. O

Remarks:

1. The choice of loss function matters in the proof. For eXantpying to prove the result using
standardZL! loss will fail (i.e., directly defining the loss as the abgelforecasting error).
You are encouraged to check this for yourself; see also fifpivher details.
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2. Itis worth emphasizing that in the preceding result, g#gret bound scales linearly with the
number of forecasts in the discretization. In particulbplayer 2 has general finite action
setA,, the number of points in asrdiscretization ofA(A,) scalesexponentiallyin the size
of A,. Thus calibration is ultimately creating a virtual forettag game in which the action
space of player 1 is siginificantly expanded, and then apglinternal regret minimization
in that space. On the other hand, the application of caldmwab establish internal regret
minimization in the preceding section amounts toampressiorof the forecast space, by
grouping together forecasts that lead to the same (puréydmsonse by player 1.
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