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In this lecture we formulate and prove the celebratedapproachability theoremof Blackwell,
which extends von Neumann’s minimax theorem to zero-sum games with vector-valued payoffs
[1]. (The proof here is based on the presentation in [2]; a similar presentation was given by Foster
and Vohra [3].) This theorem is powerful in its own right, butalso has significant implications for
regret minimization; as we will see in the next lecture, the algorithmic insight behind Blackwell’s
theorem can be used to easily develop both external and internal regret minimizing algorithms.

1 Zero-Sum Games with Vector-Valued Payoffs

We first define two-player zero-sum games with vector-valuedpayoffs. Each playeri has an action
spaceAi (assumed to be finite). In a vector-valued game, the payoff toplayer1 when the action
pair (a1, a2) is played isΠ(a1, a2) ∈ R

K , for some finiteK; that is, the payoff to player 1 is a
vector. Similarly, the payoff to player 2 is−Π(a1, a2). We use similar notation as earlier lectures:
i.e., we letΠ(s1, s2) denote the expected payoff to player 1 when each playeri uses mixed action
si ∈ ∆(Ai). We will typically view si as a vector inRAi, with si(ai) equal to the probability that
playeri places onai.

The game is played repeatedly by the players. We usest
i to denote the mixed action chosen

by playeri at timet, and we letat
i denote the actual action played by playeri at timet. We let

hT = (a0, . . . ,aT−1) denote the history of the actual play up to timeT .
We assume that the payoffs all lie in the unit ball (with respect to the standard Euclidean norm):

‖Π(a1, a2)‖ ≤ 1 for all a1, a2. Since action spaces are finite, this just amounts to a rescaling of
payoffs for analytical simplicity.

2 Approachability

We first develop approachability in the scalar payoff setting. We then generalize to halfspaces
in the vector-valued payoff setting, and finally state Blackwell’s theorem for approachability of
general convex sets.

2.1 The Scalar Case

We first develop the notion of approachability in the one-dimensional (i.e., scalar payoff) setting,
whereK = 1. In this case players 1 and 2 play a standard zero-sum game, and it is well known
(from von Neumann’s minimax theorem) that there exists a mixed actions1 of player 1 such that for
any pure actiona2 of player 2, there holdsΠ(s1, a2) ≥ val(Π) (whereval denotes the value of the
zero-sum game); and similarly, there existss2 such that for alla1, there holdsΠ(a1, s2) ≤ val(Π).

We now consider the implication of these observations for repeated play. Suppose that player
1 playss1 repeatedly. Then regardless of the (possibly history-dependent) strategy of player 2,
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the Azuma-Hoeffding inequality together with the Borel-Cantelli lemma can be easily applied to
establish that:

lim inf
T→∞

1

T

T−1
∑

t=0

Π(at
1, a

t
2) ≥ val(Π), almost surely. (1)

(To use the Azuma-Hoeffding inequality, just observe thatΠ(s1, a
t
2) − Π(at

1, a
t
2) is a martingale

difference sequence.) Alternatively, observe the preceding relationship holds if player 1 plays a
Hannan consistent strategy.

For anyv ≤ val(Π), the preceding paragraph establishes that there exists a strategy for player
1 such that, regardless of the (possibly history-dependent) strategy of player 2, there holds:

lim inf
T→∞

1

T

T−1
∑

t=0

Π(at
1, a

t
2) ≥ v, almost surely. (2)

Applying the preceding insight to player 2, the following converse holds as well. Givenε > 0, for
any strategy of player 1 there exists a (possibly history-dependent) strategy of player 2 such that:

lim sup
T→∞

1

T

T−1
∑

t=0

Π(at
1, a

t
2) < v + ε, almost surely.

Summarizing, player 1 can guarantee that his average payoffconverges to the set[v,∞) if and
only if v ≤ val(Π). A setS = [v,∞) is calledapproachableif there exists a strategy for player 1
such that, regardless of the strategy of player 2, condition(2) holds,

2.2 The Vector-Valued Case

To generalize the preceding development to the vector-valued case, we wish to study setsS ⊂
R

K such that player 1 can guarantee the average payoff1

T

∑T−1

t=0
Π(at

1, a
t
2) converges to the set

S. Approachability generalizes to the vector-valued payoffsetting in a natural way: a setS is
calledapproachableif there exists a (possibly history-dependent) strategy for player 1 such that,
regardless of the (possibly history-dependent) strategy of player 2, there holds:

lim
T→∞

d

(

1

T

T−1
∑

t=0

Π(at
1, a

t
2), S

)

= 0, almost surely,

whered(v, S) = infy∈S ‖y − v‖ is the Euclidean distance fromv to the setS.
In the scalar case, our study of approachability yields that[v,∞) is approachable if and only if

v ≤ val(Π), or equivalently, if and only if there exists a mixed actions1 for player 1 such that:

v ≤ min
a2∈A2

Π(s1, a2).

We start by using this insight from the scalar case to study approachability ofhalfspacesin the
case of vector-valued payoffs.
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In particular, letS have the following form, where‖V ‖ = 1:

S = {u ∈ R
K : V · u ≥ v}.

Such a setS is a halfspace inRK , with K − 1-dimensional tangent plane{u : V · u = v}. To
investigate approachability of the halfspaceS, consider a scalar zero-sum game whereΠ̂(a1, a2) =
V ·Π(a1, a2). In this scalar game, the set[v,∞) is approachable if and only if there exists a mixed
actions1 such that:

v ≤ min
a2∈A2

Π̂(s1, a2).

But note that approachability of thet set[v,∞) in the scalar game is equivalent to approachability
of the setS in the original game. We conclude the halfspaceS is approachable if and only if there
exists a mixed actions1 such that:

v ≤ min
a2∈A2

V · Π(s1, a2). (3)

We are now ready to state Blackwell’s approachability theorem. While approachability of
halfspaces can be studied using scalar zero-sum games, Blackwell’s theorem provides the analyti-
cal tool necessary to establish approachability of generalconvex setsS.

Theorem 1 (Blackwell [1]) A closed, convex setS ⊂ R
K is approachable if and only if all

halfspaces containingS are approachable.

3 Proof of Blackwell’s Theorem

One direction of the proof is trivial: ifS is approachable, then all halfspaces containingS are also
approachable. We only need to show that if all halfspaces containingS are approachable, thenS
is approachable. As observed above, the proof proceeds by constructing a strategy that “mixes”
the optimal strategies from each of the halfspaces containing S, to build a strategy where average
payoff always converges toS.

We will need some additional notation. LetΠ
T−1 = 1

T

∑T−1

t=0
Π(at

1, a
t
2) denote the average

payoff of player 1 up to timeT −1. For any vectorv, we letPS(v) denote theprojectionof v onto
S:

PS(v) = arg min
y∈S

‖y − v‖ = arg min
y∈S

‖y − v‖2.

(Since the last expression is a minimization problem with convex feasible region and strictly con-
vex objective function, we concludePS(v) is uniquely defined.) Note thatd(v, S) = ‖PS(v)−v‖.

The idea behind Blackwell’s proof is simple and constructive. Suppose that the average payoff
Π

T−1 does not lie inS. Then Blackwell’s strategy suggests first projectingΠ
T−1 to the setS, and

then playing the optimal strategy for the halfspace containingS that is “tangent” toS atPS(ΠT−1);
see Figure 1. The proof amounts to showing that such a strategy reduces the distance of the average
payoff toS (in expectation).

Formally, we define a strategy for player 1 as follows. The initial actiona0
1 can be chosen

according to any mixed action for player 1. IfΠ
T−1 ∈ S, thenaT

1 can be chosen according to any
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S

Π
T−1

V T−1

HT−1

PS(ΠT−1)

Figure 1: Proof of Blackwell’s Theorem.The average payoff up to timeT − 1 is Π
T−1. The

figure assumes thatΠT−1 6∈ S. PS(ΠT−1) is the projection ofΠT−1 onto the setS, i.e., the
element ofS closest (in Euclidean distance) toΠT−1. The vectorV T−1 is the unit vector in
the direction ofS, i.e., in the directionPS(ΠT−1) − Π

T−1. The halfspaceHT−1 is defined by:
HT−1 = {u : V T−1 · u ≥ V T−1 · PS(ΠT−1)}.
Since the projection minimizes the Euclidean distance to the setS, the resulting optimality condi-
tion yields thatS ⊂ HT−1. The Blackwell strategy is for player 1 to choose a mixed action sT

1 that
guarantees, regardless of the actionaT

2 of player 2, thatΠ(sT
1 , aT

2 ) lies in the halfspaceHT−1.

(history dependent) mixed action for player 1. Suppose instead thatΠT−1 6∈ S; then we make the
following definitions:

V T−1 =
PS(ΠT−1) − Π

T−1

‖PS(ΠT−1) − Π
T−1‖

, vT−1 = V T−1 · PS(ΠT−1).

Let the halfspaceHT−1 be defined by:

HT−1 = {u : V T−1 · u ≥ vT−1}.

Optimality of the projection implies that for anyv, and for anyy ∈ S:

(PS(v) − v) · (y − PS(x)) ≥ 0.

Rearranging the preceding expression, we conclude thatS ⊂ HT−1; i.e., HT−1 is a halfspace
containingS. By assumptionHT−1 is approachable, so there exists a mixed actionsT

1 such that:

min
a2∈A2

V T−1 · Π(sT
1 , a2) ≥ vT−1.
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We consider the strategy for player 1 where he plays according to sT
1 at timeT . Then:

d(ΠT , S)2 = ‖PS(ΠT ) − Π
T‖2

≤ ‖PS(ΠT−1) − Π
T‖2

=

∥

∥

∥

∥

PS(ΠT−1) − T

T + 1
Π

T−1 − 1

T + 1
Π(aT

1 , aT
2 )

∥

∥

∥

∥

2

=

∥

∥

∥

∥

T

T + 1
(PS(ΠT−1) − Π

T−1) +
1

T + 1
(PS(ΠT−1) − Π(aT

1 , aT
2 ))

∥

∥

∥

∥

2

=

(

T

T + 1

)2

‖PS(ΠT−1) − Π
T−1‖2 +

(

1

T + 1

)2

‖PS(ΠT−1) − Π(aT
1 , aT

2 )‖2

+
2T

T + 1
(PS(ΠT−1) − Π

T−1) · (PS(ΠT−1) − Π(aT
1 , aT

2 )). (∗)

The first inequality follows by the minimum-norm property ofthe projection, and the remainder of
the derivation is elementary.

DefineM as:
M = sup

v:‖v‖≤1

‖PS(v)‖.

The supremum is over the unit ball; thus we wish to upper boundthe norm of the projection of the
unit ball ontoS. Note that forv with v ≤ 1, we have:

‖PS(v)‖ ≤ ‖v‖ + ‖PS(v) − v‖ ≤ 1 + d(v, S).

Thus:
M ≤ 1 + sup

v:‖v‖≤1

d(v, S) < ∞,

where finiteness follows sinced(·, S) is continuous and the unit ball is compact.
Recalling that all payoffsΠ(a1, a2) lie in the unit ball, and usingM < ∞, we obtain:

‖PS(ΠT−1) − Π(aT
1 , aT

2 )‖2 ≤ (1 + M)2.

Applying this to (∗) and rearranging terms, we obtain:

(T + 1)2‖PS(ΠT ) − Π
T‖2 − T 2‖PS(ΠT−1) − Π

T−1‖2 ≤
(1 + M)2 + 2T (PS(ΠT−1) − Π

T−1) · (PS(ΠT−1) − Π(aT
1 , aT

2 )).

Summing terms, we obtain:

‖PS(ΠT ) − Π
T‖2 ≤ (1 + M)2(T − 1)

T 2
+

2

T

T−1
∑

t=0

t

T
(PS(Πt) − Π

t) · (PS(Πt) − Π(at+1

1 , at+1

2 ))

Now note thatt/T < 1 for 0 ≤ t ≤ T − 1. For notational convenience, defineV t = 0 andvt = 0
if Π

t ∈ S. ThenPS(Πt)−Π
t = ‖PS(Πt)−Π

t‖V t. Further, for allt we have‖PS(Πt)−Π
t‖ ≤
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1 + M . Thus we conclude:

‖PS(ΠT ) − Π
T‖2 ≤ (1 + M)2

T
+

2(1 + M)

T

T−1
∑

t=0

V t · (PS(Πt) − Π(at+1

1 , at+1

2 )).

By our choice ofst+1

1 , we know that for allt:

V t · PS(Πt) = vt ≤ V t · Π(st+1

1 , at+1

2 ).

(Observe here that we are using the fact that the inequality holds regardless of what pure action
player 2 plays at timet+1. This is where approachability of the halfspaceH t is used.) Substituting
this inequality gives:

‖PS(ΠT ) − Π
T‖2 ≤ (1 + M)2

T
+

2(1 + M)

T

T−1
∑

t=0

V t · (Π(st+1

1 , at+1

2 ) − Π(at+1

1 , at+1

2 )). (4)

Define:
Xt = V t · (Π(st+1

1 , at+1

2 ) − Π(at+1

1 , at+1

2 )). (5)

Observe that|Xt| ≤ 2, since all payoffsΠ(a1, a2) lie in the unit ball. Further,{Xt} is a martingale
difference sequence with respect to the history; i.e.,E[Xt|ht] = 0. Givenε > 0, by the Azuma-
Hoeffding inequality we have:

P

(

1

T

∣

∣

∣

∣

∣

T−1
∑

t=0

Xt

∣

∣

∣

∣

∣

> ε

)

≤ 2e−Tε2/4.

By the Borel-Cantelli lemma, we conclude that, almost surely,1

T

∣

∣

∣

∑T−1

t=0
Xt

∣

∣

∣
≤ ε for all but finitely

manyT . Since this holds for anyε > 0, we conclude that, almost surely, the right hand side of (4)
converges to zero asT → ∞. Thusd(ΠT , S) → 0 asT → ∞ almost surely, as required. 2

4 Remarks

In this section we gather together several remarks regarding the theorem and its proof:

1. The algorithm of the proof may be summarized as follows:

(a) At timet = 0, player 1 can play according to any mixed actions0
1.

(b) At time t > 0, player 1 plays according to any mixed actionst
1 such that:

(PS(Πt−1) − Π
t−1) · PS(Πt−1) ≤ min

a2∈A2

(PS(Πt−1) − Π
t−1) · Π(st

1, a2). (6)

The inequality (6) is sometimes called theBlackwell condition.
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S

u1

u2

(−2, 1)

(1,−2)

Figure 2:Example in Remark 3.In the example, player 1 achieves payoff(−2, 1) if he playsA,
and(1,−2) if he playsB, regardless of player 2’s action. The halfspaces whereu1 ≥ 0 andu2 ≥ 0
are approachable, but their intersectionS = {u : u1 ≥ 0, u2 ≥ 0} is not (since the convex hull of
player 1’s achievable payoffs lies outsideS).

2. We can use the proof to obtain some insight into the rate of convergence of the algorithm
used in the proof. FixT > 0, and givenδ > 0, chooseε as:

ε =

√

4

T
log

(

2

δ

)

.

Then recalling the definition ofXt in (5), the Azuma-Hoeffding inequality gives that:

P

(

1

T

∣

∣

∣

∣

∣

T−1
∑

t=0

Xt

∣

∣

∣

∣

∣

> ε

)

≤ 2e−Tε2/4 = δ.

Thus, referring to (4), we conclude that (for fixedT ), with probability at least1 − δ, we
haved(ΠT , S) ≤ O(

√

(1/T ) log(1/δ)). Thusd(ΠT , S) ≤ O(T−1/4) with high probability.
This can be sharpened toO(

√
T ) via a slightly different analysis, that uses a version of the

Azuma-Hoeffding inequality for vector-valued martingales; see [2].

3. Note that, in general,all halfspaces containingS must be approachable forS to be approach-
able. For example, ifS is the intersection of only finitely many halfspaces, it may not suffice
that each of those halfspaces is approachable. To see this, consider a vector-valued zero-sum
game where player 2 has no effect on player 1’s payoff; and player 1 receives payoff(−2, 1)
if actionA is played, and(1,−2) if actionB is played; see Figure 2.
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We consider whether the setS = {u : u1, u2 ≥ 0} is approachable. Clearly, the two
halfspacesS ′ = {u : u1 ≥ 0} andS ′′ = {u : u2 ≥ 0} are approachable: the former
if player 1 always playsB, and the latter if player 1 always playsA. However, the set
S = S ′

⋂

S ′′ is notapproachable, since the convex hull of player 1’s payoffs lies outside the
setS.

4. A consequence of the preceding observation is that the theorem cannot be established by
first proving a meta-theorem that “all intersections of approachable sets are approachable,”
since the preceding result is not true in general. However, we note that Blackwell’s proof
essentially amounts to establishing that by “mixing” the optimal strategies given by each
halfspace containingS, one can create a strategy that approaches their intersection. Thus,
in some sense, if one starts with “enough” approachable sets, then their intersection will be
approachable.

5. While intersections of approachable sets need not be approachable, unions of approachable
sets are always approachable; in fact, any superset of an approachable set is approachable.
Thus one direction of the proof is trivial: ifS is approachable, so is any halfspace containing
S.

6. For a convex setS to be approachable, it suffices that we have approachabilityof all halfspaces
“tangent” toS, i.e., whose tangent hyperplane is tangent to the setS. This follows since any
halfspace containingS contains a halfspace tangent toS, and thus must be approachable by
the preceding remark.
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