MS& E 336 Lecture 13: Blackwell's approachability theorem
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In this lecture we formulate and prove the celebrapgroachability theorenof Blackwell,
which extends von Neumann’s minimax theorem to zero-sumeganith vector-valued payoffs
[1]. (The proof here is based on the presentation in [2]; alaipresentation was given by Foster
and Vohra [3].) This theorem is powerful in its own right, lal$o has significant implications for
regret minimization; as we will see in the next lecture, tlgwathmic insight behind Blackwell’s
theorem can be used to easily develop both external anahaltexgret minimizing algorithms.

1 Zero-Sum Gameswith Vector-Valued Payoffs

We first define two-player zero-sum games with vector-vapebffs. Each playerhas an action
spaceA; (assumed to be finite). In a vector-valued game, the payqgifager1 when the action
pair (ay,as) is played isII(a;,ay) € RE, for some finiteK; that is, the payoff to player 1 is a
vector. Similarly, the payoff to player 2 isII(a, as). We use similar notation as earlier lectures:
i.e., we letlI(sy, so) denote the expected payoff to player 1 when each playses mixed action
s; € A(A;). We will typically view s; as a vector irR“¢, with s;(a;) equal to the probability that
playeri places oru;.

The game is played repeatedly by the players. Weslise denote the mixed action chosen
by player: at timet, and we leta! denote the actual action played by playet timet. We let
' = (a®,...,a’ ') denote the history of the actual play up to tiffie

We assume that the payoffs all lie in the unit ball (with regpe the standard Euclidean norm):
|ITI(a1,aq)|| < 1 forall a;,as. Since action spaces are finite, this just amounts to a iegaoat
payoffs for analytical simplicity.

2 Approachability

We first develop approachability in the scalar payoff sgttiwe then generalize to halfspaces
in the vector-valued payoff setting, and finally state Blaeki& theorem for approachability of
general convex sets.

2.1 TheScalar Case

We first develop the notion of approachability in the one-@sional (i.e., scalar payoff) setting,
where K = 1. In this case players 1 and 2 play a standard zero-sum gamét, iarwell known
(from von Neumann’s minimax theorem) that there exists ahactions; of player 1 such that for
any pure actiom, of player 2, there holdH (s, ay) > val(IT) (whereval denotes the value of the
zero-sum game); and similarly, there existsuch that for alk;, there holdd1(a,, s3) < val(II).
We now consider the implication of these observations fpeated play. Suppose that player
1 playss; repeatedly. Then regardless of the (possibly history-deget) strategy of player 2,



the Azuma-Hoeffding inequality together with the Borel-Gdinlemma can be easily applied to

establish that:
T—1

lim inf % > “TI(d},a}) > val(IT), almost surely (1)
t=0
(To use the Azuma-Hoeffding inequality, just observe ti&t;, a}) — I1(a!, ab) is a martingale
difference sequence.) Alternatively, observe the prewpdilationship holds if player 1 plays a
Hannan consistent strategy.
For anyv < val(II), the preceding paragraph establishes that there existatagst for player
1 such that, regardless of the (possibly history-dependtnaitegy of player 2, there holds:
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lim inf — I(a},al) > v, almost surely (2)
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Applying the preceding insight to player 2, the followingwerse holds as well. Given> 0, for
any strategy of player 1 there exists a (possibly histoqyedelent) strategy of player 2 such that:

T-1
lim sup - ) “I(a},ab) < v+e, almostsurely
T—o0
t=0

Summarizing, player 1 can guarantee that his average pagofferges to the set, ) if and
only if v < val(Il). A setS = [v, 00) is calledapproachablef there exists a strategy for player 1
such that, regardless of the strategy of player 2, cond{&dholds,

2.2 The Vector-Valued Case

To generalize the preceding development to the vectordatiase, we wish to study seisC
RX such that player 1 can guarantee the average pajygﬁf:_ol II(a}, ab) converges to the set
S. Approachability generalizes to the vector-valued pagetting in a natural way: a sétis
calledapproachabldf there exists a (possibly history-dependent) strategypfayer 1 such that,
regardless of the (possibly history-dependent) stratéglayer 2, there holds:

T-1
1
Jim d (T ZH(aﬁ,aé),S) =0, almost surely
t=0
whered(v, S) = inf,cs ||y — v|| is the Euclidean distance fromto the setS.
In the scalar case, our study of approachability yields[that) is approachable if and only if
v < val(II), or equivalently, if and only if there exists a mixed actigrfor player 1 such that:

< min II .
v_(ggllz) (s1,a2)

We start by using this insight from the scalar case to stughragehability ofhalfspacesn the
case of vector-valued payoffs.



In particular, letS have the following form, whergV'|| = 1:
S={ucRF:V.u>v}

Such a sef is a halfspace ifR”, with K — 1-dimensional tangent planfax : V - u = v}. To
investigate approachability of the halfspateconsider a scalar zero-sum game wHéte, , a,) =
V -11(a4, az). In this scalar game, the det oco) is approachable if and only if there exists a mixed
actions; such that:

v < min T(sy, a).

az€A2
But note that approachability of thet Setoo) in the scalar game is equivalent to approachability
of the setS in the original game. We conclude the halfsp&cs approachable if and only if there
exists a mixed actior; such that:
v < Jnin V - II(sy,as). 3)
We are now ready to state Blackwell's approachability theoré/Nhile approachability of

halfspaces can be studied using scalar zero-sum gamesyiliiskheorem provides the analyti-
cal tool necessary to establish approachability of geremnalex sets.

Theorem 1 (Blackwell [1]) A closed, convex sef c RX is approachable if and only if all
halfspaces containing are approachable.

3 Proof of Blackwell’s Theorem

One direction of the proof is trivial: if is approachable, then all halfspaces contairtirage also
approachable. We only need to show that if all halfspacetagung S are approachable, theh

is approachable. As observed above, the proof proceedsrsfraoting a strategy that “mixes”
the optimal strategies from each of the halfspaces congi# to build a strategy where average
payoff always converges 6.

We will need some additional notation. LEE'~' = 1 tT:_Ol [I(at, a) denote the average
payoff of player 1 up to tim& — 1. For any vectow, we let Ps(v) denote therojectionof v onto

S:
Ps(v) = i —v| = i — vl
s(v) argglelgﬂy v| argrynelgﬂy ||

(Since the last expression is a minimization problem withvex feasible region and strictly con-
vex objective function, we conclude;(v) is uniquely defined.) Note thdtv, S) = || Ps(v) —v||.

The idea behind Blackwell’s proof is simple and constructiyeppose that the average payoff
IT" ! does not lie inS. Then Blackwell’s strategy suggests first projectlig ' to the setS, and
then playing the optimal strategy for the halfspace coingif that is “tangent” toS at Pg(IT" ~1);
see Figure 1. The proof amounts to showing that such a syregdgces the distance of the average
payoff toS (in expectation).

Formally, we define a strategy for player 1 as follows. Théidhactiona{ can be chosen
according to any mixed action for player 1L.IIFF ~* € S, thena? can be chosen according to any
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Figure 1: Proof of Blackwell’s TheoremThe average payoff up to timé — 1 is II'~'. The

figure assumes thdli’ ' ¢ S. Pg(IT' ') is the projection offI’ ~* onto the setS, i.e., the

element ofS closest (in Euclidean distance) 7@’ ~'. The vectorV?~! is the unit vector in
the direction ofS, i.e., in the directionPs(IT" ') — II7~!. The halfspacei” ! is defined by:
H' ' ={u VT u> VT Py ).

Since the projection minimizes the Euclidean distance ¢és#tS, the resulting optimality condi-
tion yields thatS ¢ H”~!. The Blackwell strategy is for player 1 to choose a mixed actiothat

guarantees, regardless of the actidrof player 2, thaflI(s?, al) lies in the halfspacé/” —*.

(history dependent) mixed action for player 1. Supposeatsthafl’ ' ¢ S; then we make the
following definitions:

_— _ PS(HT_l) o HT—I
[Po(r ) 1

Let the halfspacél” ! be defined by:

UT_l — VT—l . PS(HT_I).

H' 'V ={u VI u>0"1
Optimality of the projection implies that for any, and for anyy € S:
(Ps(v) —v) - (y — Ps(x)) 2 0.

Rearranging the preceding expression, we conclude&hat H7—!; i.e., HT! is a halfspace
containingS. By assumptiorf/”~! is approachable, so there exists a mixed actiosuch that:

min VI TI(sT ) ag) > o7
az€A2
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We consider the strategy for player 1 where he plays acoptdig! at time7". Then:

d(IT", 8)* = || Ps(IT") — II"||?
< || Ps(I" ) — I®

_ T _
= Jpetrrn - - )
1 2
T-1 T-1 T-1\ T T

= et ) - )

T T—1 T—112 1 2 T—-1 T T2
() Py e () R - Tl )

2T _ _ _
D (P T (P — TH(a o). )

The first inequality follows by the minimum-norm propertytb€& projection, and the remainder of
the derivation is elementary.
Define M as:
M = sup ||Ps(v)].

v:||v]|<1

The supremum is over the unit ball; thus we wish to upper babecdorm of the projection of the
unit ball ontoS. Note that forv with v < 1, we have:

[Ps(v)|| < [lv]| + [[Ps(v) —vf| £ 1+ d(v,9).
Thus:
M <1+ sup d(v,S) < 0,

v:||v]|<1

where finiteness follows sinc&-, S) is continuous and the unit ball is compact.
Recalling that all payoff§I(a4, as) lie in the unit ball, and using/ < oo, we obtain:

|Ps(IT"1) = I(ag, a3 )[I* < (1+ M)
Applying this to ) and rearranging terms, we obtain:

(T + 1)?[| Ps(TT") — TI"||* — T2|| Po(TT" 1) =TT H|* <
(14+ M)* + 2T (Ps(II" ) — 17 Y) - (Ps(TTT 1Y) — TI(al, al)).

Summing terms, we obtain:

ﬂ

(1+MXT—1) 2
R )

t

(Ps(IT') — IT') - (Ps(IT) — I(ay", a5"))

M| =~

Il
=)

Now note that /7" < 1 for 0 < ¢ < T — 1. For notational convenience, defi#€ = 0 andv’ = 0
if IT" € S. ThenPs(IT") — IT" = || Ps(IT") — IT*||V"*. Further, for allt we have|| Ps(IT") — IT|| <
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1+ M. Thus we conclude:

(1+M)?> 201+ M)
1Ps(I0) — Y|P < = e 2o D VI (Po(I) — (e ™ 5™)).
t=0

By our choice ofs{™, we know that for alk:
Vi Py(ITY) =o' < VI TI(s abth).

(Observe here that we are using the fact that the inequadityshregardless of what pure action
player 2 plays at time+1. This is where approachability of the halfspdéeis used.) Substituting
this inequality gives:

1+ M)?  2(1+ M) <
||PS<HT) . HTHQ < ( = ) + ( - ) th (H(Szi-‘rl’aé—kl) . H(aﬁ“,agﬂ)). (4)
t=0
Define:
X, = V' (H(sy, a5™) = T(ar™, a5™)). (5)

Observe thatX,| < 2, since all payoffd1(a,, ay) lie in the unit ball. Furthe{ X, } is a martingale
difference sequence with respect to the history; E&X;|n'] = 0. Givene > 0, by the Azuma-
Hoeffding inequality we have:

1
Pl =
(7

By the Borel-Cantelli lemma, we conclude that, almost surgl I X,| < eforall but finitely

many7. Since this holds for any > 0, we conclude that, almost surely, the right hand side of (4)
converges to zero & — oo. Thusd(IT”, S) — 0 asT — oo almost surely, as required. a

T-1

> Xi

t=0

> a) < 9e~Te/4,

4 Remarks

In this section we gather together several remarks regattientheorem and its proof:
1. The algorithm of the proof may be summarized as follows:

(@) Attimet = 0, player 1 can play according to any mixed acti§n
(b) Attimet > 0, player 1 plays according to any mixed actigrsuch that:

(Pg(ITY) — TI'1) - Pg(TT'1) < min (Pg(ITFY) — II'1) - TI(st,ay).  (6)

az€A2

The inequality (6) is sometimes called tBackwell condition
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Figure 2: Example in Remark 3In the example, player 1 achieves paycff2, 1) if he playsA,
and(1, —2) if he playsB, regardless of player 2’s action. The halfspaces where 0 andu, > 0
are approachable, but their intersecti®r= {u : u; > 0,us > 0} is not (since the convex hull of
player 1's achievable payoffs lies outsiflie

2. We can use the proof to obtain some insight into the rateon¥ergence of the algorithm
used in the proof. Fix" > 0, and given) > 0, choose: as:

= 0e (2
e=/7log (5]

Then recalling the definition ok} in (5), the Azuma-Hoeffding inequality gives that:
1 T-1

P <f > X
t=0

Thus, referring to (4), we conclude that (for fix&d, with probability at least — §, we

haved(I1", S) < O(y/(1/T)log(1/6)). Thusd(IT", S) < O(T~/*) with high probability.

This can be sharpened @(+/T) via a slightly different analysis, that uses a version of the
Azuma-Hoeffding inequality for vector-valued martingslsee [2].

> 6) < 2e~ T4 — 5.

3. Note that, in generadll halfspaces containin§ must be approachable f6rto be approach-
able. For example, if is the intersection of only finitely many halfspaces, it may suffice
that each of those halfspaces is approachable. To seedh&der a vector-valued zero-sum
game where player 2 has no effect on player 1's payoff; angeplareceives payoff—2, 1)
if action A is played, and1, —2) if action B is played; see Figure 2.
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We consider whether the sét = {u : u;,us > 0} is approachable. Clearly, the two
halfspacesS’ = {u : w3 > 0} andS” = {u : us > 0} are approachable: the former
if player 1 always playsB, and the latter if player 1 always plays However, the set
S = S’ S" is notapproachable, since the convex hull of player 1's payods diutside the
sets.

4. A consequence of the preceding observation is that therehe cannot be established by
first proving a meta-theorem that “all intersections of agghable sets are approachable,
since the preceding result is not true in general. Howevernote that Blackwell’s proof
essentially amounts to establishing that by “mixing” theirmal strategies given by each
halfspace containing, one can create a strategy that approaches their intensedhus,
in some sense, if one starts with “enough” approachable thets their intersection will be
approachable.

5. While intersections of approachable sets need not be agipable, unions of approachable
sets are always approachable; in fact, any superset of anagb@able set is approachable.
Thus one direction of the proof is trivial: § is approachable, so is any halfspace containing
S.

6. Foraconvex sef to be approachable, it suffices that we have approachatilily halfspaces
“tangent” toS, i.e., whose tangent hyperplane is tangent to th&'s&his follows since any
halfspace containing contains a halfspace tangent§pand thus must be approachable by
the preceding remark.
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