First, let's write down the forward pass. The variables are:

- xs the input sequence, encoded using one-hot encoding. Denote it by x_{t}.
- hs the hidden state (a vector), at each time step. Denote it by $h_{t}=\tanh \left(W^{x h} x_{t}+W^{h h} h_{t-1}\right)$
- ys the output layer. Denote it by $y_{t}=W^{h y} h_{t}+b^{y}$
- ps the output of the softmax. Denote it by $\hat{y}_{t}=\operatorname{softmax}\left(y_{t}\right)$
- loss the cost/loss function. Cost $=-\sum_{t} \log \left(\sum_{k} \hat{y}_{t}^{k} x_{t}^{k}\right)$

Now, let's go line by line and interpret those. We will often use e.g. $\partial \operatorname{Cost}_{t} / \partial h$ to denote the contribution from time-step t to the cost function, with $C=\sum_{t} C_{t}$ for

$$
C_{t}=\log \left(\sum_{k} \hat{y}_{t}^{k} x_{t}^{k}\right) .
$$

```
dy = np.copy(ps[t])
dy[targets[t]] -= 1 # backprop into y
```

This is just the derivative of the softmax for Cost $_{t}$:

$$
\frac{\partial \operatorname{Cost}_{t}}{\partial y}=\hat{y}-x
$$

Note that x is one-hot encoded, so that it's mostly zeros, with only a single 1 at coordinate targets [t]. That's why we first set dy to ps (i.e., the \hat{y}), and then subtract y.
dWhy += np.dot(dy, hs[t].T)
dby += dy
This corresponds to the t-th component of the derivatives wrt $W^{h y}$ and b^{y} :

$$
\begin{gathered}
\partial \operatorname{Cost}_{t} / \partial W^{h y}=\frac{\partial \operatorname{Cost}_{t}}{\partial y_{t}} \frac{\partial y_{t}}{\partial W^{h y}}=\frac{\partial \operatorname{Cost}_{t}}{\partial y_{t}} h_{t}^{T} \\
\partial \operatorname{Cost}_{t} / \partial W^{h y}=\frac{\partial \operatorname{Cost}_{t}}{\partial y_{t}} \frac{\partial y_{t}}{\partial b^{y}}=\frac{\partial \operatorname{Cost}_{t}}{\partial y_{t}} 1=\frac{\partial \operatorname{Cost}_{t}}{\partial y_{t}}
\end{gathered}
$$

dh = np.dot(Why.T, dy) + dhnext
This is tricky. We want to account for the influence of h_{t} on both Cost_{t} and $\operatorname{Cost}_{(t+1) \text { :end }}$.

$$
\frac{\partial \text { Cost }_{t: \text { end }}}{\partial h_{t}}=\frac{\partial \text { Cost }_{t}}{\partial h_{t}}+\frac{\partial \text { Cost }_{(t+1): \text { end }}}{\partial h_{t}}=\frac{\partial \text { Cost }_{t}}{\partial y} \frac{\partial y}{\partial h_{t}}+\text { dhnext }
$$

dhraw $=(1-\mathrm{hs}[\mathrm{t}]$ * hs[t]) * dh

$$
\frac{\partial \text { Cost }_{t: e n d}}{\partial h r w_{t}}=\left(1-h_{t}^{2}\right) \frac{\partial \operatorname{Cost}_{t: e n d}}{\partial h_{t}}
$$

The following:
dbh += dhraw
dWxh += np.dot(dhraw, xs[t].T)
dWhh += np.dot(dhraw, hs[t-1].T)
are similar to what we already had. Note that

$$
\frac{\partial \text { Cost }_{t: e n d}}{\partial h_{t}}=\frac{\partial \operatorname{Cost}}{\partial h_{t}}
$$

since h_{t} cannot influence components of the cost that come before it in time.
Finally, we compute dhnext, which must be $\frac{\partial \text { Cost }_{t: \text { end }}}{\partial h_{t-1}}$ in order for our earlier definition to work. Now

$$
\frac{\partial \text { Cost }_{t: e n d}}{\partial h_{t-1}}=\frac{\partial \text { Cost }_{t: \text { end }}}{\partial h r a w_{t}} \frac{\partial h r a w_{t}}{\partial h_{t-1}}
$$

This is exactly what the following line does.
dhnext = np. dot(Whh.T, dhraw)
The following is self-explanatory:

```
for dparam in [dWxh, dWhh, dWhy, dbh, dby]:
    np.clip(dparam, -5, 5, out=dparam) # clip to mitigate exploding gradients
```

In the loop, we are adding up all the contributions to the gradients from all the time-steps t.

