
Northeastern University
CS4100 – Artificial Intelligence
Fall 2017, Derbinsky

Solve a Maze via Search
By the end of this project you will have built an application that applies graph search to solve a maze,
supplied as an image (see example below). Along the way you will ...

• learn to effectively use OpenCV1 to both debug intermediate steps in an AI pipeline, as well as
usefully output final results;

• compare different representations of a problem in terms of solution quality and solving time;

• as well as compare algorithmic performance of uninformed and informed search algorithms on
reasonably sized problems.

1 Software

For this project you will need Python 3 with OpenCV, as well as starter code on which to base your
solution.

1.1 Python & OpenCV

To begin, download and install Anaconda (using Python 3) for your platform2. Anaconda is a convenient
packaging of Python with libraries/tools that are commonly used in data science.

Once installed, open a command prompt with the Anaconda environment3. Now type the following com-
mand to install OpenCV4: conda install -c menpo opencv3

After installation, run python, confirm it is using Anaconda, and then type import cv2; if you receive
no errors, you are ready to roll!

1Open Source Computer Vision Library (http://opencv.org)
2https://www.anaconda.com/download
3Windows: run “Anaconda Prompt”; Mac/Linux: run Terminal
4On Mac/Windows you may have to run conda install python=3.5 before this step.

CS4100, Fall 2017, Derbinsky – Solve a Maze via Search 2

1.2 Starter Code

Download starter.zip, which accompanies this document. It includes Python starter code, as well as
mazes both in image and text form.

2 OpenCV

If you are not familiar with OpenCV, now is a good time to learn some basics. Here are some useful
resources5:

• http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_tutorials.html

• https://pythonprogramming.net/loading-images-python-opencv-tutorial/

• http://docs.opencv.org/3.0-beta/modules/refman.html

• http://modelai.gettysburg.edu/2010/set/gettingSetWithOpenCV.html

Before continuing, you should feel comfortable loading/showing images, drawing shapes on images, and
accessing/manipulating pixels.

3 Solve a Maze, Visualize Results

Before processing an input image, you should begin by solving an easier problem: given a two-by-two
grid of colors (where each distinct color has an associated cost), as well as start and end locations within
the grid, apply the GraphSearch algorithm to find a solution path.

For example, the following comes from the txt/easy water 50.txt problem file...

(4, 0)

(4, 13)

KKKKKKKKKKKKKK

KWWWWBBBBWWWWK

KWWWWBBBBWWWWK

KWWWWBBBBWWWWK

WWWWWBBBBWWWWW

KWWWWBBBBWWWWK

KWWWWBBBBWWWWK

KWWWWWWWWWWWWK

KKKKKKKKKKKKKK

The goal is to get from row 4, column 0 (starting top-left; 0 indexed) to row 4, column 13. For reference,
this is a representation of the img/easy water.png file, where each character represents the darkest pixel
in a 50x50 patch of the original picture6. The character codes, as encoded in the COST KWRGB constant of
the vizutil.py file, represent...

K Black (∞ cost; i.e. walls)

W White (1 cost; i.e. unimpeded path)

5Note that OpenCV is written in C++, and so references and tutorials will often require some additional
searching/Python-izing.

6Termed “max pooling” (see http://ufldl.stanford.edu/wiki/index.php/Pooling)

CS4100, Fall 2017, Derbinsky – Solve a Maze via Search 3

R Red (100 cost)

G Green (5 cost)

B Blue (3 cost)

Visually the problem is represented as follows (green circle=start, red circle=finish)...

and once solved using A* search (i.e. GraphSearch using a PriorityQueue with an L1, or Manhattan/Taxi-
Cab, heuristic: f(x) = g(x) + h(x), h(x) = |x|...

Once you have completed this part of the project, your Python code will produce these two images given
a file that has the contents above.

3.1 Visualize a Maze

First, open viz.py and implement the mazeMat function. To test your function, simply execute the
following commands at the prompt...

CS4100, Fall 2017, Derbinsky – Solve a Maze via Search 4

python search.py txt/easy water 50.txt 50

The first argument is the path to the text file, and the second is how big a square each color code should
produce visually. Each supplied problem file has embedded in the name an intended output size, and
each comes from images in the img directory.

When you run the command a window will pop up and will stay open until you press a key. Afterwards,
Python will exit with an error (this is expected, and we will fix this in the next part). An important
lesson to learn in many AI-related fields: it’s hard to debug what you can’t see, and so we are focusing
on seeing our problem first.

When you think you have the code working, try other sizes of the easy water maze. Then move on to
other mazes. Remember to check that each character has a one-to-one correspondence with a square in
the resulting visualization, and that your start/finish locations are accurate.

3.2 MazeProblem – with Visualization

Now it’s time to implement the MazeProblem class in the search.py file. You will need to implement
functions that provide a start state, goal test, and successor function. You may also add additional
constructor functionality, but that isn’t necessary.

To test some of this visually, implement the mazeAddPath function in the viz.py file. This function
should use the whereNext function of the supplied MazeProblem to draw circles representing the supplied
path. You will find a commented-out line in the solveMaze function of the search.py file that should
result in the following output when run (python search.py txt/easy water 50.txt 50)...

This thoroughly tests mazeAddPath, and some of getSuccessors. Don’t move on until you’ve got at
least this much working.

3.3 Search!

It is now time to implement the graphSearch function in the search.py file. Once correctly implemented,
simply run the program again to illustrate solving the maze using Depth-First Search (DFS), Breadth-
First Search (BFS), Uniform-Cost Search (UCS), and A*. Each solution is presented visually, and will
wait for you to press a key to continue.

CS4100, Fall 2017, Derbinsky – Solve a Maze via Search 5

3.4 Analysis

Use your functioning maze solver to respond to each of the following questions. You will need to submit
data and possibly visualizations to support your responses.

1. Submit a spreadsheet with nodes pushed, solve time, solution length, and solution cost for each of
the mazes in the txt folder using each of the search methods.

2. Which of the methods are not optimal? For any such method, cite a specific piece of data you
collected as evidence.

3. The differently sized mazes (e.g. easy water 1 vs. easy water 10 vs. easy water 50) are actually
just different representations of the same underlying image (i.e. just pooling more pixels in the
original image into a single character code). What effect does the multiplier size have on solving
the maze?

Note: if you wish to run a search using only a single search method, you can run the search.py program
with a final argument, which is the name of that method (see the METHODS constant in search.py for all
legal labels), for example...

python search.py txt/easy water 50.txt 50 "A* w/ L1"

This can come in handy for debugging, as well as re-collecting data without wasting time on slower
algorithms.

4 Image Processing with OpenCV

Now that you have written (and understand!) code to solve a maze in a friendly format, it’s time to
extract a maze from an image. The goal will be for you to apply simple OpenCV functionality to a few
image pre-processing steps, utilize the solveMaze function you just finished to solve the result, and then
super-impose the resulting path on the original image. For example, executing the following command...

python image.py img/small.png 10 "A* w/ L1"

Would produce something like the following...

First, the original image (primarily for debugging purposes).

CS4100, Fall 2017, Derbinsky – Solve a Maze via Search 6

Next, a “cropped” image. For this project we will assume that the maze is “axis-aligned” (meaning, not
rotated), rectangular, and surrounded by a border of a fixed color. So your code should exclude any
white space surrounding the border.

In real images there may be some noisy pixels that prevent a good crop. A reasonable strategy would
be to convert the image to grey scale, perform a Gaussian Blur7, and then consider only pixels that are
above a threshold8.

Now you should “pool” the image – that is, sequentially look in squares of length multiplier (in this
case 10), extract the pixel with the darkest pixel within that square, and that becomes the pixel in the
pooled image.

Now to make the maze! First, create the friendly row-of-rows representation from the last part of the

7https://en.wikipedia.org/wiki/Gaussian_blur
8Look at the cv2.threshold function for this part.

CS4100, Fall 2017, Derbinsky – Solve a Maze via Search 7

project. Importantly, pixels in the original image may not correspond perfectly to those in the map of
colors to costs (COST KWRGB) – so a reasonable method is, for each pixel, simply find the closest9

You will also need to find start/finish locations within the maze. For this project we will make the
simplifying assumption that entry/exit locations are on the border, and are white. So a reasonable
method would be to collect such locations and find the farthest apart – the “start” is then the location
closest to the top left.

Now use the solveMaze function you implemented in the search.py file. This will plot a solution to the
pre-processed maze – you now need to map this solution back to the original image...

It is recommended that you implement this within the origAddPath function of the viz.py file (just to be
clean/organized). Importantly, you will need to take into account the result of cropping (i.e. the degree of
offset of the top-left corner of the maze from the top-left corner of the original image), as well as pooling
(i.e. enlarge, via the multiplier, path locations from the small pooled maze to the original enlarged image).

You will find a breakdown of these steps in the main function of the image.py file. You are free to
implement additional helper functions in this file as you see fit.

9The cv2.norm function helps with this part.

CS4100, Fall 2017, Derbinsky – Solve a Maze via Search 8

4.1 Analysis

Use your functioning image-based maze solver to respond to each of the following questions. You will
need to submit data and possibly visualizations to support your responses.

1. Characterize how the max-pooling multiplier affects search time and memory10.

2. Look at the super-imposed solution of easy water using a multiplier of 50 and A* search – is this
solution optimal? Discuss.

3. Is there an upper bound on pooling size? For example, consider a maze with thin walls...

Note: within the img folder you will find a PowerPoint file that can be used to easily construct mazes for
your program – have fun!

5 Extensions

You now have a basic application for solving image-based mazes. However, we made several simplifying
assumptions. For extra credit, pursue one or more of the following directions...

• Handle differing maze shapes. This will likely require a different MazeProblem representation, as
well as detection/cropping of the outer border11.

• Handle rotations. Start with 2D (e.g. use the PowerPoint file to slightly rotate the “easy” mazes).
Now consider that you capture an image of a maze from a sheet of paper that is tilted away from
a camera – i.e. a 3D rotation of a 2D maze. Look into homography to detect the maze12.

• To scale to live video13, there need to be several performance enhancements, in addition to the
extensions above. One possible avenue is employing “erosion” to thin-out paths in the maze (i.e.
instead of uniformly reducing the size of the image, as with pooling, use content-specific thinning)14.
Another path is to convert Python loops into more optimized OpenCV calls: depending on your
implementation, this may include optimization of the color binning15 and/or the pooling16.

10Collect data while solving. Windows: Task Manager; Mac: Activity Monitor; Linux: top
11See https://www.pyimagesearch.com/2016/02/08/opencv-shape-detection/
12https://www.learnopencv.com/homography-examples-using-opencv-python-c/
13http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_gui/py_video_display/py_video_

display.html
14http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_morphological_ops/

py_morphological_ops.html
15https://codereview.stackexchange.com/questions/143529/opencv-3-using-k-nearest-neighbors-to-analyse-rgb-image
16https://stackoverflow.com/questions/38179797/numpy-max-pooling-convolution

