196 Belief Updating By Network Propagation

The operation of the three schemes will be illustrated with a simple example
borrowed from Spiegelhalter [1986], originally by Cooper [1984]:

Metastatic cancer is a possible cause of a brain tumor and is also an explanation for
increased total serum calcium. In turn, either of these could explain a patient falling
into a coma. Severe headache is also possibly associated with a brain tumor.

Figure 4.23 shows the Bayesian network representing these relationships. As
in the preceeding sections, we use uppercase letters to represent propositional
variables and lowercase letters for their associated propositions. For example,
C € {1, 0} represents the dichotomy between having a brain tumor and not having
one. +c stands for the assertion C = 1 or "Brain tumor is present," and —c stands
for the negation of +c, i.e., C = 0.

Metastatic cancer

Increased total

_ Brain tumor
serum calcium 9 G

Coma Severe headaches

Figure 4.23. A Bayesian network describing causal influences among five variables.

Table 1 expresses the influences in terms of conditional probability
distributions. Each variable is characterized by a link matrix, specifying the
probability distribution of that variable given the state of its parents.t The root
variable, having no parent, is characterized by its prior distribution.

T The probabilities are for illustration purposes only, and are not meant to realistically reflect current
medical knowledge. Additionally, the variable "Coma" should be interpreted to mean "Lapsing
occasionally into coma"; otherwise it would preclude headaches.

| cassssaaaEE S SSBHHESSSSSEEEEEEEEEEEESETSSSSS

4.4 Coping with Loops 197
Table 1.
P(a): P (+a)= .20
P(bla): P (+bl+a)=.80 P(+bl—a)=.20

P(cla): P (+cl+a)= .20 P(+cl—a)=.05

P(dlb,c): P(+dl+b,+c)=.80 P (+d|=b ,+c) = .80
P(+d|+b,—c)=.80 P(+dl=b,—c)=.05

P(elc): P(+el+c)=.80 P(+el—c)=.60

Given this information, our task is to compute the posterior probability of every
proposition in the system, given that a patient is suffering from severe headaches
(+e) but has not fallen into a coma (—d), i.e.,e = {E = 1, D = 0}.

44.1 Clustering Methods

A straightforward way of handling the network of Figure 4.23 would be to collapse
B and C into a single node representing the compound variable Z = {B, C'} with
the values

z € {(+b, +¢), (=b, +c), (+b, =), (=b, =)} . (4.65)

PMb,c la)

P(e | c)

Figure 4.24. Clustering B and C turns the network of Figure 4.23 into a tree.

This results in the tree structure shown in Figure 4.24. Since the cardinality of
variable Z is 4, the matrices on all three links must have either four rows or four

210 Belief Updating By Network Propagation
A=1 A=1 A=0 A=0
JH; .2-LJ' J{yz .os#l
BEL'=0512 | B BEL'=0.16 BEL°=0.053 =
w120.0975 wizo007s | € wioozs | ° iE“L=0_.80%7 ¢
.2/.76'\\”" o135 20\ ¥ /s
\ /, \ /)

Figure 4.31. Updated beliefs, messages, and weights after observing E =1 and D = 0.
Beliefs are computed by the combination BEL = w' BEL' + w® BEL®.

At this point, all belief distributions can be computed at their corresponding nodes, as in
Figure 4.31:

BEL(b) =wk.p BEL'(b) + wg , BEL'(b),
BEL(c) = wkp BEL'(c) + wg p BEL%(c),
where
BEL'(b) = o! m!(b) A)(b) = ' (0.8 - 0.2, 0.2 - 0.76) = (0.512, 0.488),
BEL®(b) = a® n°(b) A (b) = (0.2 - 0.2, 0.8 - 0.9) = (0.053, 0.947),
BEL'(c) = o! w!(c) Ah(c) Ag(c) = o' (0.2 - 0.2 - 0.80, 0.8 - 0.35 - 0.60)
(0.16, 0.84),
o 0(c) A3 (c) Ag(c) = o2(0.05 - 0.2 - 0.80, 0.95 - 0.8 - 0.60)
(0.017, 0.983).

BEL®(c)

These yield

BEL(b) = (0.096, 0.904),
BEL(c) = (0.031, 0.964).

BEL(a), of course, is equal to the current mixing weight wg p = (0.0975, 0.9025).

4.4.3 Stochastic Simulation

Stochastic simulation is a method of computing probabilities by counting how
frequently events occur in a series of simulation runs. If a causal model of a
domain is available, the model can be used to generate random samples of

4.4 Coping with Loops 211

hypothetical scenarios that are likely to develop in the domain. The probability of
any event or combination of events can then be computed by counting the
percentage of samples in which the event is true.

Metastatic cancer

@

Increased total

: Brain tumor
serum calcium 9 G

©) ®

Coma Severe headaches

Figure 4.32. The Bayesian network used to demonstrate stochastic simulation (same as in
Figure 4.23).

For example, in the causal model of Figure 4.32, we can generate hypothetical
samples of patients by the following procedure: We draw a random value a; for A,
using the probability P(a). Given a;, we draw random values b; and c, for the
variables B and C, using the probabilities P(bla;) and P(cla), respectively.
Given b; and c;, we draw random values d; and e; for D and E, using
Pd|by,c;) and P(elc;), respectively. The combination of values
(a;, by, 1, dy, ey) represents one sample of a patient scenario. The process now
repeats from A down to D and E, each run generating a quintuple that represents
one patient.

Stochastic simulation shows considerable potential as a probabilistic inference
engine that combines evidence correctly but is computationally tractable. Unlike
numerical schemes, the computational effort is unaffected by the presence of
dependencies within the causal model; simulating the occurrence of an event given
the states of its causes requires the same computational effort regardless of whether
the causes are correlated. In our example above, simulating the event D given the
states of events B and C was straightforward, even though B and C are correlated
(via A). Thus, the presence of loops in the network does not affect the
computation.

Stochastic simulation carries a special appeal for Al researchers in that it
develops probabilistic reasoning as a direct extension of deterministic logical

212 Belief Updating By Network Propagation

inference. It represents probabilities explicitly as "frequencies” in a sample of
truth values, and these values, unlike numerical probabilities, can be derived by
familiar theorem-proving techniques and combined by standard logical
connectives. Nor is the technique foreign to human reasoning; assessing
uncertainties by mental sampling of possible scenarios is a very natural heuristic
and an important component of human judgment.

Another advantage offered by simulation techniques is their inherent
parallelism. If we associate a processor with each of the propositional variables
explicit in the model, then the simultaneous occurrence of events within each
scenario can be produced by concurrently activating the processors responsible for
these events. For example, the occurrence of the event A = 1, "The patient has
metastatic cancer," could in one run trigger simultaneously events (B = 1, C = 1),
while in a different run the combination (B = 1, C = 0) may occur. Though the
propagation schemes developed in Sections 4.2 and 4.3 also provide parallelism,
the simulation approach enjoys the added advantage of message simplicity.
Instead of relaying probability distributions, the messages passing between
processors are the actual values assigned to the corresponding variables. t

Henrion [1986a] has suggested a scheme, called logic sampling, which uses a
Bayesian network as a scenario generator and assigns random values to all system
variables in each simulation run in a top-down fashion. Belief distributions are
calculated by averaging the frequency of events over those cases in which the
evidence variables agree with the data observed. This scheme retains the merits of
causal modeling in that it conducts the simulation along the flow of causation, so
that each step can be given a conceptually meaningful interpretation. Since the
simulation proceeds only forward in time, however, there is no way to account for
evidence known to have occurred (e.g., —d, +e) until the variables corresponding
to these observations are sampled. If they match the observed data, the run is
counted; otherwise, it must be discarded. The result is that the scheme requires too
many simulation runs. In cases comprising large numbers of observations (e.g.,
20), all but a small fraction (e.g., 107%) of the simulations may be discarded,
especially when a rare combination of data occurs.

A better way to account for the evidence would be to permanently clamp the
evidence variables to the values observed, and then conduct a stochastic
simulation on the clamped network. The question that remains is how to propagate
the random values coherently through the network, now that boundary conditions
are imposed on both the top and bottom nodes, i.e., on premises as well as
consequences.

This section describes such a propagation method, involving a two-phase
cycle: local numerical computation followed by logical sampling. The first

T This conforms to the connectionist paradigm of reasoning [Rumelhart and McClelland 1986], in
which processors are presumed to communicate by merely passing their levels of activity.

4.4 Coping with Loops 213

phase involves computing, for some variable X, the conditional distribution given
the states of all its neighboring variables. The second phase involves sampling the
computed distribution and instantiating X to the value selected by the sampling.
The cycle then repeats itself by sequentially scanning all the variables in the
system. We shall illustrate the simulation scheme using the medical example of
Figure 4.32. Then we shall prove the correctness of the formula used in these
computations and discuss methods for implementing the sampling scheme in
parallel.

ILLUSTRATING THE SIMULATION SCHEME

Given the information in Table 1, our task is to compute the posterior probability
of every proposition in the system, given that a patient is observed to be suffering
from severe headaches (+¢) but has not fallen into a coma (—d), i.e., E =1 and
D = 0. The first step is to instantiate all the unobserved variables to some arbitrary
initial state, say A = B = C = 1, and then let each variable in turn choose another
state in accordance with the variable’s conditional probability, given the current
state of the other variables. For example, if we denote by w, the state of all
variables except A (i.e., wy = { B=1, C=1, D=0, E=1}), then the next value of
A will be chosen by tossing a coin that favors 1 over 0 by a ratio of P(+alw,) to
P(—alwy).

In the next subsection, we shall show that P(x | wy), the distribution of each
variable X conditioned on the values wy of all other variables in the system, can be
calculated by purely local computations. It is given as the product of the link
matrix of X and the link matrices of its children:

P(alwy)=P(alb,c, d, e)=0P(a)P(bla)P(cla), (4.69a)
P(blwg)=P(bla,c,d, e)=0Pla)Pdlb,c), (4.69b)
P(clwc) =P(cla,b,d, e)=aP(cla)P(d|b, c)P(elc), (4.69c¢)

where the o’s are normalizing constants that make the respective probabilities sum
to unity. The probabilities associated with D and E are not needed because these
variables are assumed to be fixed at D =0 and E = 1. Note that a variable X can
determine its transition probability P(x|wy) by inspecting only neighboring
variables, i.e., those belonging to X’s Markov blanket (see Section 3.3.1, Corollary
6). For example, A must inspect only B and C, while B must inspect only A, C,

and D.

EXAMPLE: For demonstration purposes, we will activate the variables sequentially, in
the order A, B, C, acknowledging that any other schedule would be equally adequate.

214 Belief Updating By Network Propagation

ACTIVATING A
Step 1: Node A inspects its children B and C; finding both at 1, it computes (using
Eq. (4.69q))
PA=1lwy)=PA=1I1B=1,C=1)=aP(a)P(+bl+a) P(+cl+a)
=ax0.20 x 0.80x0.20
=ox0.032,
PA =0lwy) =P(A =01B=1,C=1)=0aP(—a) P(+bl—=a) P(+c|—a)
=0x0.80 x 0.20 x 0.05
= o x 0.008,
o =[0.032 + 0.008]" =25,

yielding
P(A =11wy) =25 x 0.032 =0.80,
P(A =01lwy) =25 x 0.008 =0.20.

Step 2: Node A consults a random number generator that issues 1s with 80% probability
and Os with 20% probability. Assuming the value sampled is 1, A adopts this value, and
control shifts to node B.

ACTIVATING B

Step 1: Node B inspects its neighbors; finding them with values A =1,C =1,and D =0,
it computes (using Eq. (4.69b))

PB=1lwg) PB=11A=1,C=1,D=0) _ oP(+bl+a) P(=d|+b, +c)
P(B=0lwg) PB=01A=1,C=1,D=0) aP(=bl+a)P(—d|—b, +c)

0.80 x (1-0.80) _ 4

K (1-0.80)(1-0.80) 1’

Step 2:

As A did in its turn, B samples a random number generator favoring 1 by a 4 to 1 ratio.
Assuming, this time, that the value sampled is 0, B adopts the value 0 and gives control to
C.

ACTIVATING C
Step 1: The neighbors of C are at the state
we={A=1,B=0,D=0,E=1}.

SPIEP G SO

s

A

e

4.4 Coping with Loops 215

Therefore, from Eq. (4.69¢):

P(+clwe) P(+cl+a) P(=d1=b, +c) P(+el+c)
P(—clwe) — P(=cl+a) P(—d|=b, —c) P(+el—c)

_ 020 x (1-080) 080 _ 1
T (1-0.20)(1-0.05)0.60 14.25°

Step 2: C samples a random number generator favoring 0 by a 14.25 to 1 ratio. Assuming
the value 0 is sampled, C adopts the value 0 and gives control to A.

ANSWERING QUERIES

The cycle now repeats itself in the order A, B, C until a query is posted, e.g., "What is the
posterior distribution of A?" Such a query can be answered by computing the percentage of
times A registered the value 1 or by taking the average of the conditional probabilities
P(A=11w,) computed by A. The latter method usually yields faster convergence.

To illustrate, the value of P(A = 11w,) computed in the next activation of A would be

PA=1IB=0,C=0)=0P(+a)(—=bl+a) P(—c|+a)
=a 0.20 (1 —0.80) (1 —0.20)
=o 0.032,

P(A=0IB=0,C=0)=0P(—a)P(=bl=a)P(—cl—a)
=a 0.80 (1 -0.20) (1 —0.05)
=o 0.608,

o = (0.032 + 0.608)"" = 1.5625,
P(A=11B=0, C=0) = 0.05,
P(A=01B=0, C=0) = 0.95.

If a query "P(+al—d, +e) = ?" arrives at this point, A samples the computed distribution
(i.e., P(a) = 0.05) and upon selecting a value 0 provides the estimate

1+0 _
2

P(+al—d, +e) = 0.5.

The second method gives

P(+al—d, +e) = Qg(’;—&% = 0.425 .

216 Belief Updating By Network Propagation

The exact value of P(+al—d, +e) happens to be 0.097 (see the calculations in Sections
4.4.1 and 4.4.2); it takes over 100 runs for P to come within 1% of this value.

The convergence of P to the correct value of the posterior probability is
guaranteed, under certain conditions, by a theorem of Feller [1950] regarding the
existence of a limiting distribution for Markov chains. In each simulation run the
system’s configuration changes from state i to state j, and the change is governed
by the transition probability P(x| wy) of the activated variable. The essence of
Feller’s theorem is this: if for any pair (i, j) of configurations there is a positive
probability of reaching j from i in a finite number of transitions, then regardless of
the initial configuration, the probability that the system will be found at a given
state approaches a limit, which is determined by the stationarity condition

P() =Y PG)P(jli), (4.70)

where P(j | i) is the probability of reaching state j from state i in one transition. In
our case, the reachability condition is guaranteed if all link probabilities are
positive, because every configuration then has a positive probability of being
realized in one run (over all variables). Thus, the fact that the transition
probabilities P(x | wy) satisfy Eq. (4.70) relative to distribution P is sufficient to
guarantee that the asymptotic probability distribution—and hence P—will
converge to P. In other words, as time progresses the system is guaranteed to reach
a steady state, in the sense that regardless of the initial instantiation, the
probability that the system will enter any global state w is given by the joint
distribution P(wy) specified by the link matrices. The case where some link
probabilities are zero corresponds to reducible Markov chains and limits the
applicability of stochastic simulation schemes (see the concluding subsection).

This simulation scheme can also be used to find the most likely interpretation
of the observed data, i.e., a joint assignment w* of values to all variables that has
the highest posterior probability of all possible assignments, given the evidence.
This will be discussed in Chapter 5.

JUSTIFYING THE COMPUTATIONS

We shall now prove the correctness of the product formula (Eq. (4.69)) used for
computing the transition probabilities P(x|wy). Clearly, the conditional
distribution of X given the state of all remaining variables is sensitive not to every
variable in the system but only to those in the neighborhood of X, namely, the
variables that if known would render X independent of all other variables in the
system. Such a neighborhood, called a Markov blanket By of X, was identified in
Section 3.3.1 (Corollary 6) as comprised of three types of neighbors: direct

4.4 Coping with Loops 214/

parents, direct successors, and all direct parents of direct successors. In Figure
4.32, for example, the Markov blankets for each variable are given as follows:

BA={B’C}, BB={Ayc,D}7
Bc={A,B,D,E}, Bp={B,C}, Bg={C}.

Yet, replacing P(x | wy) with P(x | by) will not be very helpful unless the latter can
be easily computed from the link matrices surrounding X. Next we shall show tha’lt
P(x | wy) consists of a product of m+1 link matrices, where m is the number of X’s

children.

Figure 4.33. The Markov neighborhood of X, including parents (U, U,), children
(Y, Y,), and mates (M |, M ,).

218 Belief Updating By Network Propagation

Consider a typical neighborhood of variable X in some Bayesian network, as
shown in Figure 4.33: Define the following set of variables:

1. X’sparents, Uy = {Uy,..., U,}.

2. X’schildren, Yy = {Y,..., Y¥,,}.

3. Fj, the set of parents of Y o

4. Wy = W-X, the set of all variables except X.

THEOREM 1: The probability distribution of each variable X in the network,
conditioned on the state of all other variables, is given by the product

P Iwy) = aPxlu) TLPLy; 00, @.71)

where . is a normalizing constant, independent of x, and x, wy, uy, yj, and fi(x)
denote any consistent instantiations of X, Wy, Uy, Y i, and Fj, respectively.

Thus, P(xlwy) can be computed simply by taking the product of the
instantiated link matrix stored at node X and those stored at X’s children. In Figure
4.33, for example, we have

P(XIWX)=(XP(.X'|U1, uz)P(yl lx,ml)P(yzlx, uz,yl,mz).

Proof: If we index the system’s variables W= {X|, X,,.., X;,..,} by an ordering
consistent with the arrow orientation of the network, then the joint distribution of W can be
written as a product (see Eq. (3.28), Chapter 3):

P(w) =P(xy, Xp,.00 X)) = ILP(x; 1 TI,),
1
where ITy; stands for the values attained by X;’s parents. Now consider a typical variable
X € W, having n parents Uy and m children Yy = (Y ,..., ¥,,}. x appears in exactly m+1

factors of the product above; once in the factor P(x luy) and once in each P(y;|f;) factor
corresponding to the j-th child of X. Thus, we can write

P(w) =P(x, wy) = P(x luy) jf[l P@y;lfjx)) kl'IKP(xk ITLy,),
where

K= {k Xke Wx—Yx}.

4.4 Coping with Loops 219

Since x does not appear in the rightmost product (over k), this product can be regarded
as a constant o.” relative to x, and we can write

P(x, wy) = o P(x luy) IjT O 1fi(x)).
Moreover, since

P(wx) =X, P(x, wy)

is also a constant relative to x, we have

P(x,
Pxiwg) = ——gw’g) = aPx luy) TP 1)

which proves the theorem. Q.E.D.

The main significance of Theorem 1 is that P(x | wy) is computed as a product
of parameters that are stored locally with the specification of the model. Thus, the
parameters are readily available, and the computations are extremely simple.

CONCURRENT SIMULATION WITH DISTRIBUTED CONTROL

The simulation process can also be executed in parallel, but some scheduling is
required to keep neighboring processors from operating at the same time. To see
why this is necessary, imagine two neighboring processors, X and Y, entering the
computation phase at the same time ¢;. X observes the value y; of Y and calculates
P(xly,); at the same time, Y observes the value x; of X and calculates P(y | xy).
At a later time, t,, they enter the simulation phase with X instantiated to a sample
X, drawn from P(x|y;) and Y instantiated to a sample y, drawn from P(y lx).
The new values x, and y, are not compatible with the distribution P. P was
consulted to match y, with x; (and x, with y;), but now that X has changed its
value to x5, y, no longer represents a proper probabilistic match to x.

To formalize this notion, note that a prerequisite to coherent relaxation is that
the distribution of X and Y be stationary, as in Eq. (4.70). In other words, if at time
t1, X and Y are distributed by P(x, y), then the values of X and Y at time ¢, must
also be distributed by P(x, y). This requirement is met when only one variable

220 Belief Updating By Network Propagation

changes at any given time, because then we can write (assuming Y is the changing
variable)

PX,=x,Y,=y)= ;,P(XZ =x,Y,=y1X;=x",Y,=y)Px",y")
xy
=PY;=ylX;=x)P(X, =x)
=PX,=x,Y,=y)=P(x,y), 4.72)

which implies stationary distribution. If, however, X and Y change their values
simultaneously, we have

PXy=x,Y,=y)=P,=y1X; =x) P(X2 =x)
ZPXy=x,Y,=ylX;=x",Y;=y)P(x",y)
xy

L PX =x1Y, =y) P(Y; =y1X; =x) P,)
xy

_y Pty) PGLY)
s PO) PW)
which represents stationary distribution only in the pathological case where X; and
Y, are independent.

This analysis, extended to the case of multiple variables, allows us to
determine which variables can be activated simultaneously. Let the set of
concurrently activated variables be Z = {Z{, Z,,..., Z,}, and assume that each Z;
variable chooses a new value z;” by sampling the distribution P(z; | s;), where S; is
the subset of variables inspected by Z; prior to switching. If W, stands for the set
of unchanged variables, then under the requirement of stationary distribution,

Px’,y"), 4.73)

P(z’, Wz) = P(Z, Wz)
or
P lwz) =P(zlwy), 4.74)

because P(wz) remains unchanged in the transition.
Since the values z” of the Z variables are drawn independently from P(z; Is;),
Eq. (4.74) translates to

"l:Il P(Z, =7z |Si) = P(Zl, 299005 Zp | Wz) 5 (4.75)

This requirement is satisfied whenever each S; is a Markov blanket of Z;,

P(Zi |s,-) = P(Zi I WZ’.), (4.76)

4.4 Coping with Loops 221

and, simultaneously, each S; shields Z; from all other Z’s,

P(Zi |Si) = P(Zi |Si /\Zj) i= 1, 2, P (N (4.77)
J#i

To meet both Eq. (4.76) and Eq. (4.77), it is clear that if S; contains any of the Z;’s,
then S; —Z; must also shield Z; from all other Z’s. However, if we assume that
each S; already is the smallest Markov blanket permitted by the network, we must
conclude that no Z;’s should be a member of any of the S;’s. Thus, any set of
variables licensed to be activated simultaneously must not contain a pair of
variables belonging to the same Markov blanket.

A convenient way to enforce this requirement is to add dummy links between
mates (i.e., nodes sharing a child), taking care that no two adjacent nodes in the
augmented network are activated concurrently. The question now arises how to
schedule the activation of the processors so that the following conditions hold:

1. No two adjacent processors are activated at the same time.
2. Every processor gets activated sufficiently often.

3. The activation commands are generated in distributed fashion, with no
external supervision.

This problem is a version of the "dining philosophers" dilemma originally posed by
Dijkstra [1972] and later solved independently by Gafni and Bertsekas [1981] and
Chandy and Misra [1984]. The solution is a distributed control policy called edge
reversal, involving the following steps:

1. The links of the network are assigned arbitrary acyclic arrow
orientation. (This orientation bears no relation to the causal ordering
governing the construction of Bayesian networks.)

2. Each processor inspects the orientation of the arrows on its incident
links and waits until all arrows point inward, i.e., until the processor
becomes a sink.

3. Once a processor becomes a sink, it is activated, and when it completes
the computation, it reverses the direction of all its incident arrows (i.e.,
it becomes a source).

It is easily seen that no two neighbors can be activated at the same time. What
is more remarkable about this edge reversal policy, however, is that no processor
ever gets "deprived"; every processor fires at least once before the orientation
returns to its initial state and the cycle repeats itself. This feature is important
because it constitutes a necessary condition for the convergence of the entire
process [Geman and Geman 1984].

222 Belief Updating By Network Propagation

A A A A
@@&é B !
D E D E D E D E

(€] (®) (c) @=@

Figure 4.34. Concurrent activation under the edge-reversal policy. Sinks fire and reverse
their edges, thus ensuring that no two neighbors fire concurrently.

Figure 4.34 applies this policy to the Bayesian network of Figure 4.32 by
marking with circles the nodes activated at each step of the process. Initially, the
dummy edge BC is added to designate these mates as neighbors, and the
orientation of Figure 4.34a is assigned, where C is the only sink. Once C is
activated, the arrows pointing to C are reversed (by C), whereupon B and E
become sinks and fire. After three steps (Figure 4.34d), the orientation is back
where it started, and the cycle repeats. Note that every processor fires once during
the cycle and that we twice (Figures 4.34b and 4.34c) had two processors firing
simultaneously. The problem of achieving maximum concurrency with edge
reversal was analyzed by Barbosa [1986], who showed that the difference in the
number of firings of any two nodes in the network cannot exceed a constant equal
to the distance between them.

CONCLUSIONS

Stochastic simulation offers a viable inferencing technique for evidential reasoning
tasks by virtue of its local and concurrent character. Although hundreds of runs
may be necessary for achieving reasonable levels of accuracy, each run requires
only | V| +| E| computational steps, where | V | is the number of vertices
in the model and | E | is the number of edges. Unlike purely numerical
techniques, which sometimes entail exponential complexity, the length of
computation is determined mainly by the required degree of accuracy, not by the
dependencies embodied in the model. It is postulated, therefore, that stochastic
simulation will be found practical in applications involving complex models with
highly interdependent variables and in applications where "ballpark" estimates of
probabilities will suffice.

The method has a drawback, however: the rate of convergence deteriorates
when variables are constrained by functional dependencies. For example, if X and
Y are a pair of adjacent variables constrained by equality, X = Y, then starting the

e e e e e

____ - TSRS

4.5 What Else Can Bayesian Networks Compute? 223

simulation in a state where X =Y =0 will leave X and Y clamped to O forever.
Likewise, starting with X = Y = 1 will leave them clamped to 1 even though states
having X = Y = 0 may be more probable. If we permit the equality to be violated
with small probability p, this clamping phenomenon disappears, but the rate of
convergence still seems to be proportional to 1/p [Chin and Cooper 1987]. While
the theory of Markov chains [Feller 1950] guarantees that the simulation counts
obtained by stochastic simulation will converge to the correct posterior
probabilities associated with each proposition, the theory requires that every
conceivable state has a nonzero probability of occurring, and this requirement is
violated under logical or functional constraints.

One way to speed up the convergence rate is to treat clusters of tightly
constrained elements as singleton variables, conduct the simulation runs on the
clustered network, and then compute the internal distribution of the elements
within each cluster. If such clusters cannot be identified in advance, the stochastic
simulation method should be restricted to Henrion’s scheme of forward simulation,
i.e., each variable reacts only to the state of its direct parents, ignoring the states of
other neighbors. This will render the method robust to functional dependencies
but may necessitate a large number of runs to match rare sets of observations. A
method combining the merits of both the forward-driven and the neighborhood-
driven simulation schemes has not yet been identified.

4.5 WHAT ELSE CAN BAYESIAN NETWORKS
COMPUTE?

4.5.1 Answering Queries

Since a quantified Bayesian network represents a complete probabilistic model of
the domain, and since one can easily use such a network to derive the joint
probability distribution P(x1,..., x,) for all variables involved, it is clear that the
network contains sufficient information for computing answers to all queries
regarding the variables X1,..., X,. In other words, if g(xy,..., x,) stands for any
Boolean combination of the propositions X; = x1, X, = X3,..., X, = X,,, then an
answer of the form P(q) can always be computed from the joint distribution
represented by the network. For example, if all variables are propositional, and ¢
stands for the truth value of [(X, = TRUE) A (X3 = TRUE)] v (X¢ = TRUE), then
P(q) can be calculated by summing P(xy,..., X,) over all elementary events
(x| AXy,..., A X,) entailed by the event g. Our goal is to find an efficient network
representation for that calculation.

So far, the propagation scheme developed in this chapter has been aimed at
computing the belief function BEL for each node in the network, which amounts to

