
Wentworth Institute of Technology
COMP1050 – Computer Science II
Spring 2015, Derbinsky

Part 3

For this assignment you are to implement a set of classes in Java. You must document the classes using
Javadoc and turn in the source files, in the appropriate folder structure, as a zip file. You will be evaluated
based upon correctness (adhering to the problem description, passing test cases), object-oriented design
(e.g. appropriate usage of inheritance, member access control, etc.), and source code documentation (via
Javadoc).

Assignment Overview

This assignment is the third building block to your final project and involves implementing classes given
an API, supporting source/jars, and a set of unit tests. You are going to implement a hierarchy of classes
supporting datasets.

0. Assignment Setup

First, download and unzip the p3-starter.zip file.

Next, import the contents of the file as a project in Eclipse. You will see red error icons – this is to be
expected.

Finally, you should have available for reference the JavaDoc for the whole project (final-doc.zip),
which includes the classes you must write for this part. (Note: it also includes classes you won’t need for
this particular project, but that make up the final project.)

1. Your Task

You are required to implement several classes. In doing so, you must adhere to the following general
restrictions (additional notes are in subsections below):

• You cannot modify the provided public/protected API in any way.

• You may create variables/methods, but they must be private.

The methods you are to implement are all documented, and the test cases provide example usage. The
following sections discuss the classes you are to implement.

If you pass all of the test cases, your implementation is in good shape. You may wish to create additional
test cases in a separate file, but only turn in the source code for the classes you required to implement.



COMP1050, Spring 2015, Derbinsky – Part 3 2

1.0 Iterable

The Iterable interface simply requires that a class return an iterator, which is an object that itself
implements the Iterator interface (note that both of these interfaces are typed via generics; note also
that these can be the same object – hint hint!). One of the syntactic reasons for a class to be iterable is so
that you can use the foreach loop (e.g. for (Foo f : bar), assuming bar implements Iterable<Foo>).

So, to make a class iterable, you are going to have to implement a class (typically a private inner class)
that implements Iterator and return it inside the required iterator method. Your custom iterator
must only implement two methods: hasNext (returns true if there is anything left to iterate over) and
next (returns the next object to be iterated over). All Java collections are iterable, which is why you
can easily loop over their contents (hint hint – this might be useful if you have a list of examples laying
around. . . ). You will be making your datasets iterable as well, so you can easily loop over their examples
(and in a later assignment, you will make each example iterable, so you can loop over the features).

1.1 DataSet

The DataSet class provides an abstraction for iterating over examples, without committing to a particular
backend mechanism of storage/representation.

1.2 HiddenPatternDataSet

The HiddenPatternDataSet allows you to define a dataset via simple patterns. Each pattern states that
for a particular result object, there are a certain set of features that will have a fixed value. For example,
all “dog” examples will have feature 1 equal to 1 and feature 3 equal to 2, whereas all “cat” examples
will have feature 2 equal to 1 and feature 4 equal to 2. Any unspecified features will either be 0 or a
random value in a known range, as defined by class configuration.

This dataset has [at least] two interesting aspects. First, the object should not store any examples,
but should instead generate them reliably and repeatedly on demand. Thus, no matter how many ex-
amples are generated, the amount of memory needed by the class should only be as big as the number
of patterns provided by the user. Second, if examples are made that use 0 for unspecified features, the
class should generate SparseExample objects; if instead the features are random-valued, the class should
generate DenseExample objects. Importantly, for random values, you will need to make use of a random
seed such that two consecutive iterations over the dataset yield the same results.

To implement this class you may find it useful to use the LinkedHashMap1 class. This class implements
the Map interface2 and its implementation is such that you are able to iterate over the keys in the order
they were added into the map.

1.3 ListDataSet

Many sources of examples (e.g. files) would work well in a list, and so a ListDataSet is an abstract class
that facilitates such storage, using an ArrayList backend.

1See http://docs.oracle.com/javase/8/docs/api/java/util/Map.html
2See http://docs.oracle.com/javase/8/docs/api/java/util/LinkedHashMap.html



COMP1050, Spring 2015, Derbinsky – Part 3 3

1.4 LibSVMDataSet

The LibSVMDataSet builds on the ListDataSet: it parses an input stream, in LibSVM format, and
adds each example to the dataset. Each example starts with the result object and, to provide maxi-
mum flexibility, the LibSVMDataSet takes as an argument a ResultInterpreter object to convert the
first string on each file into an appropriate Java object (e.g. an integer). The LibSVMDataSet provides the
ResultInterpreter interface, as well as two static implementations, one for strings (StringInterpreter)
and the other for integers (IntegerInterpreter).

When parsing the input stream, which may be from a file or some other source (e.g. network trans-
fer), you may find it useful to use a BufferedReader3, with an InputStreamReader4, as well as a
StringTokenizer5.

2. Opportunities

For extra credit, write a separate console program that allows a user to specify an arbitrary HiddenPatternDataSet

(via interactive questions) and then writes the resulting dataset to a file the user specifies.

3See http://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html
4See http://docs.oracle.com/javase/8/docs/api/java/io/InputStreamReader.html
5See https://docs.oracle.com/javase/8/docs/api/java/util/StringTokenizer.html


