
Wentworth Institute of Technology
COMP1050 – Computer Science II
Spring 2015, Derbinsky

Part 1

For this assignment you are to implement a set of class in Java. You must document the classes using
Javadoc and turn in the source files, in the appropriate folder structure, as a zip file. You will be evaluated
based upon correctness (adhering to the problem description, passing test cases), object-oriented design
(e.g. appropriate usage of inheritance, member access control, etc.), and source code documentation (via
Javadoc).

Assignment Overview

This assignment is the first building block to your final project and involves implementing classes given
an API, supporting source/jars, and a set of unit tests. You are going to implement three algorithms, two
of which are simple Machine Learning1 techniques, and the other is an efficient technique for breaking
ties in streams of data.

0. Assignment Setup

First, download and unzip the p1-starter.zip file.

Next, import the contents of the file as a project in Eclipse. You will see red error icons – this is to be
expected.

Finally, you should have available for reference the JavaDoc for the whole project (final-doc.zip),
which includes the classes you must write for this part. (Note: it also includes classes you won’t need for
this particular project, but that make up the final project.)

1. Your Task

You are required to implement several classes. In doing so, you must adhere to the following general
restrictions (additional notes are in subsections below):

• You cannot modify the provided public/protected API in any way.

• You may create variables/methods, but they must be private.

The methods you are to implement are all documented, and the test cases provide example usage.

If you pass all of the test cases, your implementation is in good shape. You may wish to create additional
test cases in a separate file, but only turn in the source code for the classes you required to implement.

1See http://en.wikipedia.org/wiki/Machine_learning



COMP1050, Spring 2015, Derbinsky – Part 1 2

1.0 Random

The following sections discuss the classes you are to implement. To do so, you will need to generate
random numbers, and this means learning about random number generators and the Random class in
Java.

To begin, you should read about random number generators2. Big point #1: on a standard computer
it is challenging to produce a stream of numbers that appears random. Big point #2: most languages
have such a facility, and they most often have the concept of a “seed”, which is a value that allows you
to produce sequences of random numbers repeatedly.

In Java, the Random class is such a facility3. For this assignment, you will be most interested in the
constructor, which allows you to set the random seed, and the nextDouble method, which produces a
random value between 0.0 and 1.0.

1.1 TieBreaker

You are going to write a class that will be useful in a variety of situations, including this assignment. The
basic problem is to find the “best” item in a stream of items in which you don’t know the length ahead
of time. If all items have different values, this is simple: just keep track of the best item you’ve seen thus
far. However, what happens in the case of a tie? To be fair, you’d like to randomly select from all those
items that have the best value, but how do you do so if you don’t know ahead of time how many of these
items you will encounter, or that this potential pool is prohibitively large? Thankfully there is a simple
algorithm4 you are to implement that deals with this situation.

In addition to the best item and its value, your class must also have a counter, initially set to 1. Each
time you find an item that has a truly better value, store that item, the best value, and set the counter
to 1. When you encounter an item that has the same value as your current best, increment the counter,
and then ask for a random number between 0 and 1 – if the value is smaller than 1

counter , then replace
your existing best item with the new best item. Simple as that!

1.2 ZeroRClassifier

The ZeroR algorithm5 is a simple baseline algorithm that determines which example label is most common
in the training set, and responds to that for all testing examples.

1.3 NearestNeighborClassifier

The NearestNeighbor algorithm6 stores all training examples in a list. When presented with a testing
example, it finds the “closest” example it saw during training (via some distance function) and uses that
example’s result.

1.4 EuclideanDistanceSquared

A very common distance metric is Euclidean (also known as L2). Since all we care about is relative
distance between examples, we’ll actually square this value, which will save you the time of executing the
square root function.

2See http://en.wikipedia.org/wiki/Random_number_generation
3See http://docs.oracle.com/javase/8/docs/api/java/util/Random.html
4For related reading, look to http://en.wikipedia.org/wiki/Reservoir_sampling
5http://www.saedsayad.com/zeror.htm
6http://www.saedsayad.com/k_nearest_neighbors.htm


